日韩偷拍一区二区,国产香蕉久久精品综合网,亚洲激情五月婷婷,欧美日韩国产不卡

在線客服
量子機器學(xué)習(xí)中數(shù)據(jù)挖掘的量子計算方法:英文圖書
人氣:61

量子機器學(xué)習(xí)中數(shù)據(jù)挖掘的量子計算方法:英文

《量子機器學(xué)習(xí)中數(shù)據(jù)挖掘的量子計算方法(英文版)》分三個部分對量子機器學(xué)習(xí)中數(shù)據(jù)挖掘的量子計算方法進行了介紹,第壹部分對基礎(chǔ)概念進行了整體概述,例如,機器學(xué)習(xí)、量子力學(xué)、量子計算等,第二部分介紹了經(jīng)典...

內(nèi)容簡介

《量子機器學(xué)習(xí)中數(shù)據(jù)挖掘的量子計算方法(英文版)》分三個部分對量子機器學(xué)習(xí)中數(shù)據(jù)挖掘的量子計算方法進行了介紹,第壹部分對基礎(chǔ)概念進行了整體概述,例如,機器學(xué)習(xí)、量子力學(xué)、量子計算等,第二部分介紹了經(jīng)典的學(xué)習(xí)算法,第三部分介紹了量子計算與機器學(xué)習(xí)。這本書綜合了廣泛的調(diào)查研究形成,采用簡潔的表達形式,并配以應(yīng)用、實踐的例子。

編輯推薦

《量子機器學(xué)習(xí)中數(shù)據(jù)挖掘的量子計算方法(英文版)》由哈爾濱工業(yè)大學(xué)出版社出版。

作者簡介

作者:(匈牙利)維特克(Wittek P.)

目錄

目錄 Preface

Notations

PartOne FundamentaIConcepts

1 Introduction

1.1 Learning Theory and Data Mining

1.2 Why Quantum Computers?

1.3 A Heterogeneous Model

1.4 An Overview of Quantum Machine Learning Algorithms

1.5 Quantum—Like Learning on Classical Computers

2 Machine Learning

2.1 Data—DrivenModels

2.2 FeatureSpace

2.3 Supervised and Unsupervised Learning

2.4 GeneralizationPerformance

2.5 ModeIComplexity

2.6 Ensembles

2.7 Data Dependencies and ComputationalComplexity

3 Quantum Mechanics

3.1 States and Superposition

3.2 Density Matrix Representation and Mixed States

3.3 Composite Systems and Entanglement

3.4 Evolution

3.5 Measurement

3.6 UncertaintyRelations

3.7 Tunneling

3.8 Adiabatic Theorem

3.9 No—CloningTheorem

4 Quantum Computing

4.1 Qubits and the Bloch Sphere

4.2 QuantumCircuits

4.3 Adiabatic Quantum Computing

4.4 QuantumParallelism

4.5 Grover's Algorithm

4.6 ComplexityClasses

4.7 QuantumInformationTheory

Part Two ClassicalLearning Algorithms

5 Unsupervised Learning

5.1 Principal Component Analysis

5.2 ManifoldEmbedding

5.3 K—Means and K—Medians Clustering

5.4 HierarchicalClustering

5.5 Density—BasedClustering

6 Pattern Recogrution and Neural Networks

6.1 ThePerceptron

6.2 HopfieldNetworks

6.3 FeedforwardNetworks

6.4 DeepLearning

6.5 ComputationalComplexity

7 Supervised Learning and Support Vector Machines

7.1 K—NearestNeighbors

7.20ptimal Margin Classifiers

7.3 SoftMargins

7.4 Nonlinearity and KemelFunctions

7.5 Least—SquaresFormulation

7.6 Generalization Performance

7.7 Multiclass Problems

7.8 Loss Functions

7.9 ComputationalComplexity

8 Regression Analysis

8.1 Linear Least Squares

8.2 NonlinearRegression

8.3 NonparametricRegression

8.4 ComputationalComplexity

9 Boosting

9.1 WeakClassifiers

9.2 AdaBoost

9.3 A Family of Convex Boosters

9.4 Nonconvex Loss Functions

Part Three Quantum Computing and Machine Learning

10 Clustering Structure and Quantum Computing

10.1 Quantum Random Access Memory

10.2 Calculating Dot Products

10.3 Quantum Principal Component Analysis

10.4 Toward Quantum Manifold Embedding

10.5 QuantumK—Means

10.6 QuantumK—Medians

10.7 Quantum Hierarchical Clustering

10.8 ComputationalComplexity

11 Quantum Pattern Recognition

11.1 Quantum Associative Memory

11.2 The Quantum Perceptron

11.3 Quantum Neural Networks

11.4 PhysicaIRealizations

11.5 ComputationalComplexity

12 QuantumClassification

12.1 Nearest Neighbors

12.2 Support Vector Machines with Grover's Search

12.3 Support Vector Machines with Exponential Speedup

12.4 ComputationalComplexity

13 Quantum Process Tomography and Regression

13.1 Channel—State Duality

13.2 Quantum Process Tomography

13.3 Groups, Compact Lie Groups, and the Unitary Group

13.4 Representation Theory

13.5 Parallel Application and Storage of the Unitary

13.6 Optimal State for Learning

13.7 Applying the Unitary and Finding the Parameter for the Input State

14 Boosting and Adiabatic Quantum Computing

14.1 Quantum Annealing

14.2 Quadratic Unconstrained Binary Optimization

14.3 Ising Model

14.4 QBoost

14.5 Nonconvexity

14.6 Sparsity, Bit Depth, and Generalization Performance

14.7 Mapping to Hardware

14.8 ComputationalComplexity

Bibliography

在線預(yù)覽

Recent advances in quantum information theory indicate that machine leamingmay benefit from various paradigms of the field.For instance, adiabatic quantumcomputing finds the minimum of a multivariate function by a controlled physicalprocess using the adiabatic theorem (Farhi et al., 2000).The function is translated toa physical description, the Hamiltonian operator of a quantum system.Then, a systemwith a simple Hamiltonian is prepared and initialized to the ground state, the lowestenergy state a quantum system can occupy.Finally, the simple Hamiltonian is evolvedto the target Hamiltonian, and, by the adiabatic theorem, the system remains in theground state.At the end of the process, the solution is read out from the system, andwe obtain the global optimum for the function in question.

While more and more articles that explore the intersection of quantum computingand machine learning are being published, the field is fragmented, as was alreadynoted over a decade ago (Bonner and Freivalds, 2002).This should not come as asurprise: machine learning itself is a diverse and fragmented field of inquiry.Weattempt to identify common algorithms and trends, and observe the subtle interplaybetween faster execution and improved performance in machine learning by quantumcomputing.

網(wǎng)友評論(不代表本站觀點)

免責(zé)聲明

更多出版社
主站蜘蛛池模板: 四子王旗| 南宫市| 辽宁省| 乌兰浩特市| 延安市| 界首市| 巴林左旗| 光泽县| 米易县| 南靖县| 中江县| 岚皋县| 三穗县| 邯郸市| 合水县| 苍梧县| 辰溪县| 杨浦区| 来宾市| 大厂| 新余市| 星座| 北宁市| 沾化县| 玛纳斯县| 苏尼特右旗| 桦甸市| 巨鹿县| 镇安县| 宕昌县| 泰安市| 莆田市| 丁青县| 滕州市| 井研县| 阜宁县| 阳城县| 华坪县| 石狮市| 张家港市| 仁化县|