日韩偷拍一区二区,国产香蕉久久精品综合网,亚洲激情五月婷婷,欧美日韩国产不卡

在線客服

抗震結構設計論文實用13篇

引論:我們為您整理了13篇抗震結構設計論文范文,供您借鑒以豐富您的創作。它們是您寫作時的寶貴資源,期望它們能夠激發您的創作靈感,讓您的文章更具深度。

抗震結構設計論文

篇1

1.3結構性能化設計措施(1)為提高剪力墻連梁的延性,在連梁中配置型鋼,并加強其腰筋及箍筋配置(配筋率不小于0.4%且不小于計算配筋)。(2)在核心筒剪力墻中配置型鋼,一是為了承擔部分剪力及彎矩;二是與墻體豎向鋼筋共同承擔拉力。(3)通過核心筒的連梁來實現結構耗能,雖然連梁中設置了型鋼,但墻體中也設置了型鋼,相對于墻肢而言,連梁截面內力遠小于墻體截面,所以地震作用時是連梁首先發生彎曲破壞,起耗能作用。雖然結構承載力已按較高的性能目標實現,但為使結構具有較好的塑性變形能力,結構仍然按高延性設計,核心筒及框架柱抗震等級為一級,鋼構件抗震等級為二級。

2結構計算分析

2.1振動模態采用SATWE,ETABS軟件進行多遇地震作用下的計算對比分析。ETABS軟件計算得到的結構的振型圖如圖8所示(兩種軟件計算得到的振型一致),由圖8可以看出,懸挑部分有較大的振動反應。

2.2整體分析結果對比由SATWE,ETABS軟件計算的結構總體指標對比見表5。由表5可知,兩個軟件計算的結果比較接近,相符度較好。SATWE軟件計算的整體穩定性驗算指標剛重比X向為117.86,Y向為46.79,均大于規范限值2.7(不考慮二階效應的限值);ETABS軟件計算的整體穩定性驗算指標剛重比X向為106,Y向為46.79,均大于規范限值1.4(穩定限值)和2.7(不考慮二階效應的限值)。

2.3施工卸載模擬計算懸挑桁架部分采用滿堂腳手架施工,腳手架支承于地下室頂板上,地下室頂板考慮60kN/m2的施工荷載。采用分段吊裝的施工方案,桁架在現場焊接成型,采用塔吊和汽車吊相結合的方法完成吊裝(圖9)。全部鋼結構構件安裝完畢后再進行腳手架卸載,卸載順序為由遠端向根部逐漸延伸,在卸載過程中應對鋼結構變形及位移進行現場測量。卸載完畢后,開始安裝鋼筋桁架,澆筑樓板,砌筑固定隔墻,然后封閉樓板后澆帶。圖9施工方案示意圖本工程進行了施工卸載模擬分析,分四步拆腳手架,首先拆第四節下對應的腳手架,接著拆第三節、第二節、第一節下對應的腳手架。卸載過程遠端位移模擬顯示懸挑遠端滿足《鋼結構設計規范》(GB50017—2003)[3](簡稱鋼規)要求,雖卸載過程與使用狀態下的結構支撐條件和荷載作用條件不同,但卸載過程中構件的內力符號沒有發生變化,且其應力比均小于正常使用狀態下的應力比。

2.4防連續倒塌分析與設計對于防連續倒塌的分析,參考高規采用了兩種方法:一是拆除構件法;二是施加表面荷載法。(1)KZ1是受荷最大、最為重要的柱,所以對其按拆除構件法驗證是否滿足防連續倒塌的要求。計算結果表明,與所拆除構件直接相連的構件最大應力比為[(0.69/1.35)/1.25]×2=0.818,斜拉腹桿最大應力比為(1.13/1.35)/1.25=0.67,其余各構件應力比均小于1。(2)對于桁架的主要弦桿和腹桿,采用在構件表面附加80kN/m2側向荷載的方法進行驗證分析,分三步進行:第一步是按未加側向荷載進行計算;第二步是將構件從整體結構中取出來,施加側向荷載進行內力計算;第三步是疊加前兩步內力。計算結果見表6,由表6可知,桁架一的主要桿件應力比均小于1.0。

2.5人群荷載下樓蓋振動舒適度驗算由于樓蓋結構的跨度比較大,故對其進行了舒適度研究,采用MIDAS/Gen進行樓蓋振動舒適度分析。樓蓋振動舒適度分析考慮兩種人群荷載工況:工況一為21人同頻率、同相位行走;工況二為60人同頻率、不同相位行走的。計算結果表明,樓蓋最大振動加速度為0.0452m/s2,滿足規范限值0.05m/s2要求。

2.6樓蓋風振時程分析基于風洞試驗實測數據,結合風速時程樣本,采用MIDAS/Gen軟件模擬結構風振[5],本工程中只考慮順風向風速的影響,采用了Davenport脈動風速譜,參考深圳市氣象局近年來的風速統計資料,設定參考風速,以MonteCarlo法為基礎采用諧波疊加法,設定關心的頻率始值和終值,隨機產生風速時程曲線。局部風振時程荷載按點荷載直接施加于模型相應測點處。分析結果表明,不同風振時程樣本引起的樓蓋最大加速度差別較大,這主要是由于隨機生成的風振時程的自身差異所導致的;基于本文的時域分析方法及風振報告提供的頻率方法(其中樓蓋振動最大加速度為0.221m/s2)計算出的樓蓋風振效應均很明顯。針對本工程而言,風荷載引起的豎向振動是設計的控制因素。

3關鍵節點設計及有限元分析

懸挑桁架從混凝土核心筒及外框柱伸出,第7層E,B點(圖3)處節點交匯桿件達11根,節點受力比較復雜。懸挑桁架下弦桿根部彎矩非常大,盡管鋼材已采用Q420GJC,但板厚仍超過100mm,基于此提出了解決桁架根部局部彎矩過大的新型節點,見圖10。此節點通過對工字形截面翼緣板加下掛板的方式,變相增加了翼緣板的寬度。此種做法一是可以減小板厚,降低焊接難度;二是相對于箱形截面其便于焊接和混凝土澆搗。節點分析擬考慮兩種荷載工況:一是大震作用工況;二是構件屈服工況,即加載至某構件(根據大震的分析結果,選取承載能力利用率最高的構件)發生屈服。選取桁架一下弦桿梁柱節點及桁架二下弦桿梁墻節點進行節點分析。采用MIDAS/FEA[7]進行分析。大震作用下節點應力云圖如圖11所示,結果表明,節點區幾乎所有的鋼構件均保持在彈性狀態,混凝土受拉及受壓均保持在彈性狀態,節點區構件滿足承載能力極限狀態的要求。構件屈服工況下節點應力云圖如圖12所示,結果表明,應力最大鋼構件中和軸以下全部發生屈服時,節點核心區內板件仍保持在彈性狀態,節點板屈服區域僅分布在以屈服構件相連的局部區域,沒有向節點板核心區擴展,滿足“強節點、弱構件”的控制要求。

篇2

所謂抗震概念設計,一般是指不經過計算,尤其在難以做出精確理性分析或在規范中難以規定的問題中,依據整體結構體系與分結構體系之間的力學關系、結構破壞機理、震害、實驗現象和工程經驗中所獲得的基本設計原則和設計思想,從總體的角度來進行建筑結構的總體布置和抗震細部措施的宏觀控制,從而從根本上保證結構的抗震性能。

三、結構抗震概念設計的基本原則和具體要求

(一)建筑場地的選擇

地震造成建筑的破壞,除地震動直接引起結構破壞以外,還有場地條件的原因,諸如:地震引起的地表錯動與地裂,地基土的不均勻沉陷、滑坡和土體液化等。因此選擇有利于抗震的建筑場地是減輕建筑物地震災害的第一道重要工序。(二)建筑物的平面、立面及豎向剖面的布置建筑物平面和立面的規則性是抗震概念設計中需要考慮的一個重要因素。規則的建筑方案體現在:建筑物的平面布置基本對稱;結構體型簡單;抗側力體系的剛度和承載力上下變化連續、均勻。因為,簡單、對稱的結構容易估算其在地震時的反應,容易有針對性的采取抗震措施并對其進行細部處理。因此,這就要求建筑專業的設計人員具有一定的抗震知識素養,應該對所設計的建筑的抗震性能有所估計,避免采用抗震性能差的嚴重不規則的設計方案。

(三)結構體系的確定和結構布置

結構體系的確定是結構設計中頭等重要的大事。結構設計時應通過綜合分析使結構體系盡量合理且經濟,應優先采用抗震能力強、延性好、耗能能力強、便于施工且具有多道防線的結構體系(如框架-剪力墻結構,框架-筒體結構,設置耗能連梁的剪力墻結構等),避免采用抗震能力較低的結構體系(如板柱-剪力墻結構,單跨框架結構等),尤其應避免采用看似“合法”(符合規范)但不合理的結構體系(如當房屋高度接近規范框架結構類適用高度上限時,仍采用框架結構,震害表明,框架結構的側向剛度較小,整體性較差,結構的抗震性能較差,此情況下應采用抗震性能較好的框架-剪力墻結構為宜)。而在結構布置時,應采用概念清晰、傳力途徑明確的布置方式,盡量避免造成結構扭轉、平面和立面的里出外進、豎向傳力桿件的間斷與不連續等問題。

(四)多道抗震防線的設置

單一結構體系只有一道抗震防線,一旦破壞就會造成建筑物倒塌的嚴重后果。特別是當建筑物的自振周期與地震動卓越周期相近時,建筑物由此而發生的共振,更加速其倒塌進程。而如果建筑物采用的是多重抗側力體系時,第一道防線的抗側力構件在強烈地震作用下遭到破壞后,第二道乃至第三道防線的抗側力構件立即接替,抵擋住后續的地震動的沖擊,可保證建筑物最低限度的安全,免于倒塌。在遇到建筑物基本周期與地震動卓越周期相同或接近的情況時,多道防線就更顯示出其優越性。當第一道抗側力防線因共振而破壞,第二道防線接替工作,建筑物自振周期將出現較大幅度的變動,與地震動卓越周期錯開,使建筑物的共振現象得以緩解,避免再度嚴重破壞。在雙重結構體系中一般應優先選擇不負擔或少負擔重力荷載的豎向支撐或填充墻,或軸壓比值較小的抗震墻、實墻筒體等構件作為第一道防線的抗側力構件,如框架-剪力墻結構中的剪力墻,框架-填充墻結構中的填充墻,單層廠房縱向體系中的柱間支撐,均可作為各自體系中的第一道抗震防線。如因條件限制,只能采用單一的框架體系,則框架就成為整個體系中唯一的抗側力構件,此時應采用“強柱弱梁”型的延性框架。在地震作用下,框架梁成為第一道抗震防線,框架柱為第二道抗震防線,用框架梁的變形去消耗地震能量,使框架梁的屈服先于框架柱的屈服,從而保護了框架柱的相對完整,最終達到“大震不倒”的要求。

(五)結構抗震設計關鍵點的把握

篇3

地震災害涉及到人類的生命和財產安全,是人類生活面臨的重要的問題,也是建筑結構抗震設計的主題之一。因此,在建筑結構設計的時候,必須充分考慮到抗震設計,這已經在房屋建筑結構設計中占據非常重要的位置,在設計時只有采取適當的措施,以防止地震對建筑物的造成的巨大破壞,為減少地震的損失與危害在設計上做出應有的貢獻,以保護人民的生命和財產安全。

一、 建筑結構抗震的重要性

在建筑結構中應用抗震結構的設計,首先能夠保證人員的生命安全,為內部人員的逃生以及求救爭取寶貴的時間; 其次,強化了建筑結構的設計,增加了建筑結構的抗震性,也將是建筑結構的使用壽命得到提升,使其利用價值得到不同程度的飛躍。建筑的基本功能是供人們居住,隨后才是審美價值的體現。就建筑的基本功能來說,其能夠供人居住的首要前提是安全,包括使用安全以及建筑物自身的安全。也就是說,建筑物只有在保證了自身安全的前提之下,才能夠供人們使用。因此,在建筑物的設計和建設過程中,往往需要對影響建筑安全性的因素作全方位考慮。地震作為一種不可預知的自然災害,其對建筑物安全性能的影響極大。而建筑物的安全一旦遭受威脅,必然會出現倒塌事件,從而砸傷和掩埋生命,給人們帶來物質和精神上的雙重損失。因此,建筑物在建設初期就必須做好抗震的準備工作,從根本上確保人們的生命和財產安全。

二、提高建筑結構抗震設計的措施

1、合理選址以提高建筑物的抗震能力

地震發生時,如果建筑物本身抗震能力弱,結構不堅固或者建筑剛性強而韌性不足,很容易遭到嚴重的破壞神之倒塌。如果建筑物選址不合理,地基建在地質不穩固的地方,地震會引起地表的地裂和錯動以及地面沉降,這種破壞在地基不穩固的地方更加明顯,因此合理選址以提高建筑物的抗震能力非常重要。在建筑物選址時,易選擇地層穩固地帶,應盡量避開地質不穩固的地方,如斷層帶、地下采空區、地下水空洞區、易液化土等地方。如果沒有條件避開上述不適合建造建筑物的地區時,應采取相應的抗震應對措施。依據國家對建筑物抗震的類別等級,采取人工加固地基、注意建筑結構的整體性、建筑物的外形勻稱、建筑物的結構簡單減輕建筑物自重等,都可以消除地基液化沉陷。還有一種特殊的地質構造,那就是在地基的主要受力層內還存在土質較軟的粘性土層或者不均勻的土層面時,這種地質構造若發生地震,地基會發生不均勻沉降。在此種地質構造地帶施工時,應采用樁基和加強基礎的措施來加固地基。

2、使用科學的結構形式

目前,我國常用的建筑結構有:鋼筋混凝土結構、砌體結構、鋼混結構以及鋼結構。防裂度和地區不同都是造成結構不同的主要因素, 通常鋼筋混凝土結構的抗震能力相對較強,由于自身柔韌性較好, 所以鋼筋混凝土在建筑物變形能力控制中,具有良好的承載能力。因此,在建筑結構設計中,必須根據抗震要求以及功能特征選用合理的結構方案,在審核結構體系中,也必須考慮結構側移度,特別是高層建筑物結構設計。隨著高層建筑結構高度增加,不僅會讓建筑結構在地震作用以及其他負荷作用影響下增大水平位移,也會讓建筑結構抗側移的剛度增加。而對于不同的鋼筋混凝土結構體系、組成方式、構建以及受力特征,在抵抗側移剛度等方面都具有很大的差異性,所以在使用中,必須根據具體情況,選用合理的高度。

3、強化設計質量

由于地震具有超強的危害性,所以在地震設計時,必須注重各項影響因素。由于我國建筑設計水平相對落后,很多建筑結構使用的方案不夠合理,在不能科學布置建筑結構方案的過程中,不僅增加了建筑成本和自身重量,也加大了地震危害。因此,在建筑抗震設計中,必須正確運用抗震理論,根據相關設計原則,不斷保障或者提高建筑結構可靠性與安全性。具體原則包括:努力降低地震作用時結構位移與扭轉,并且建筑結構必須擁有足夠的剛度;結構構件承載能力相對較高,同時具有足夠的耗能能力與延性。在這過程中,延性大說明變形能力相對較高,承載力與強度減小速度緩慢,不能有足夠的空間吸收,還能耗散地震能量,從自身結構避免坍塌。

4、選擇合理的建筑材料

在設計階段,要進行抗震分析和計算,在選擇建筑材料時,要對其參數進行可靠度分析,也要充分考慮材料參數的變異性,而且盡可能選擇自振頻率不同的材料,避免在地震作用時結構物局部或者整體發生共振,造成嚴重破壞。

5、合理的平立面布置

建筑物的動力性能基本上取決于它的建筑布局和結構布置。建筑布局簡單合理,結構布置符合抗震原則,從而確保房屋具有良好的抗震性能。建筑物的平、立面布置宜規則、對稱,質量和剛度變化均勻,避免樓層錯層。對體形復雜的建筑物合理設置變形縫,在結構設計時要進行水平地震作用計算和內力調整,并應對薄弱部位采取有效的抗震構造措施,嚴格控制建筑物的高度和高寬比。

6、多道抗震防線的設置

這樣可以避免在地震作用下,由于局部損壞而造成整個建筑結構的損壞,例如框架----抗震墻結構系統,抗震墻可以抵抗較大的側壓力,是第一道防線,當在地震作用下抗震墻發生破壞時,框架結構就起到抗震的第二道防線。 多道抗震防線可以極大的消耗地震能量,延緩或者減輕地震作用對高層建筑的損壞。

7、加強建筑物內部的薄弱部分

在高層建筑中,由于層數較多,建筑面積較大,難免存在一些受力比較大而比較薄弱部分,在建設過程中,要及時對薄弱部分進行加強,采取有效措施增強其強度和剛度,這樣就可以極大提高其承載力,避免在地震作用下過早的屈服產生較大變形,導致建筑結構局部損壞或者整個結構的損壞。

8、保障結構的延性

(1)對于建筑結構當中柱、梁等構件,應該按照強柱弱梁的原則,增加柱子的抗彎能力。鋼筋混凝土的框架在強震發生時,當地震威力致使建筑結構達到最大的非線性位移時,梁端的塑性鉸的塑性轉動會比較大。當柱端的塑性鉸出現比較晚,那么建筑結構達到最大的非線性位移時它的塑性轉動會比較小。這樣就保證了框架有了比較穩定的塑性耗能構件。

(2)要提高結構的延性,還要采取強剪弱彎的措施。因為剪切對于破壞根本沒有延性,如果某個部位一旦發生剪切破壞時,這個部位在整個抗震結構中的作用就會喪失,柱端發生剪切破壞,建筑結構的局部就會發生坍塌,局部坍塌有可能導致整個建筑物的坍塌。因此,要采取措施來增大梁柱和柱端的組合剪力值,保證任何構件在強震發生時都不會損壞其剪力。

總之,結構抗震設計有許多不確定或不確知的因素,很難做到對結構進行精確的抗震計算,并得到結構在地震作用下的真實反應。因此結構的抗震設計除了必須進行細致的計算分析外,要特別注重結構的概念設計。如選取對建筑抗震適宜的建筑場地,設計延性結構,采用輕質高強建筑材料,設置多道抗震設防,加強結構的整體穩定性,重視結構的抗震構造措施等方面,只有這樣才能保證結構的抗震性能。

參考文獻:

[1] 李鳴. 淺談建筑結構抗震設計[J]. 科技致富向導,2013(6):330.

篇4

為了提高超高層建筑的抗震性,其足夠的結構側向剛度必不可少。足夠的結構側向剛度不僅可以保障建筑物的安全性、抗震性,還可在一定程度上有效抵抗建筑結構構件的不利受力情況及極限承載力下的安全穩定性。設計超高層建筑的結構抗震側向剛度,應重點從其結構體系和剛度需求進行。

2.1結構設計。結構初步設計根據建筑高度和抗震烈度確定高度級別和防火級別。超高層結構設計首先滿足規范要求的高寬比限值和平面凹凸尺寸比值限值,其次控制扭轉不規則發生:在考慮偶然偏心影響的規定水平地震力作用下,扭轉位移比不大于1.4;最大層間位移角不大于規范限值的0.4倍時,扭轉位移比不大于1.6;混凝土結構扭轉周期比不大于0.9,混合結構及復雜結構扭轉周期比大于0.85。最后設計過程中嚴格控制偏心、樓板不連續、剛度突變、尺寸突變、承載力突變、剛度突變等現象。滿足結構設計規范的同時,還應考慮建筑師的設計意圖和功能需求,同時滿足設備專業設計要求。結構平面的規整程度直接影響著抗震設計的強弱,盡量采用筒體結構,以使得承受傾覆彎矩的結構構件呈現為軸壓狀態,且其中的豎向構件應最大程度的安置在建筑結構的外側。各豎向構件和連接構件的受力合理、傳力明確,降低剪力滯后效應,杜絕抗震薄弱層產生。

2.2結構側向剛度控制。超高層建筑的抗震性能設計主要與結構側向剛度的最大層間位移角和最小剪力限制相關。對于層間位移角限值,其是衡量建筑抗震性的剛度指標之一,地震作用應使得建筑主體結構具有基本的彈性,保證結構的豎向和水平構件的開裂不會過大。同時,因超高層建筑的底部樓層、伸臂加強層等特殊區域的彎曲變形難以起主導作用,所以應采取剪切層間位移或有害層間位移對其變形進行詳細的分析與判斷。對于最小地震剪力,其最重要的兩個影響因素是建筑結構的剛度和質量,當超高層建筑難以達到最小地震剪力要求時,設計人員應該結合具體情況適度的增加設計內力,提高其抗震能力和穩定性,然而,當不能滿足最小地震剪力時,還需通過重新設計或調整建筑結構的具體布置或提高剛度來提高建筑物在地震作用下的安全性,而非單純增高地震力的調整系數。

3超高層建筑的性能化抗震設計

超高層建筑的抗震性能設計,國內主要根據“三個水準,兩個階段”,即“小震不壞、中震可修、大震不倒”。超高層建筑來說,其建筑工程復雜、高度極高、面積大、成本高,一旦受到地震損害,其損失程度會更高,因此,必須充分考慮各方理論、實際情況和專家意見,兼顧經濟、安全原則,定量化的展開超高層建筑的性能化抗震設計。同時,相關文件雖針對超高層建筑結構的性能化設計制定了較具體且系統的指導理念,涉及宏觀與微觀兩個層面。但是,由于結構構件會受到損壞,且損壞與整體形變情況的分析計算都需進行專業的彈塑性靜力或動力時程計算,而目前我國尚未形成相關的定量化的評價體系,因此,設計人員應在積極參考ATC-40和FEMA273/274等規范。此外,對于彎曲變形為主導的建筑結構,在大震作用后應尤其注重構件承載力的復核。

4超高層建筑多道設防抗震設計

除了上述注意事項外,針對超高層建筑進行抗震性設計時,還因注重設計多道的抗震防線。多道抗震防線是指一個由一些相對獨立的自成抗側力體系的部分共同組成的抗震結構系統,各部分相互協同、相互配合,一同工作。當遭遇地震時,若第一道防線的抗側移構件受到損害,其后的第二道和第三道防線的抗側力構件即會進行內力的重新調整和分布,以抵御余震,保護建筑物。目前,我國超高層建筑主要依靠內筒和外框的協同工作來達到提供抗側剛度的目的,包含兩種受力狀態:首先,建筑的內外結構通過樓板和伸臂析架來協調作用,進而使得外部結構承受了較多的傾覆彎矩和較少的剪力,而內筒則承受了較大的剪力和一些傾覆彎矩,廣州東塔就是此受力方式的典型;其次,以交叉網格筒或巨型支撐框架為代表的建筑外部結構,其十分強大,依靠樓板的面內剛度,外部結構即可同時承受較大的傾覆彎矩和剪力,如廣州西塔。

篇5

1、建筑結構抗震設計的基本原則

1.1結構構件應具有必要的承載力、剛度、穩定性、延性等方面的性能

(1)結構構件應遵守“強柱弱梁、強剪弱彎、強節點弱構件、強底層柱(墻)”的原則。(2)對可能造成結構的相對薄弱部位,應采取措施提高抗震能力。(3)承受豎向荷載的主要構件不宜作為主要耗能構件。

1.2設置多道抗震防線

(1)一個抗震結構體系應由若干個延性較好的分體系組成,并由延性較好的結構構件連接協同工作。例如框架—剪力墻結構由延性框架和剪力墻兩個分體組成,雙肢或多肢剪力墻體系組成。(2)強烈地震之后往往伴隨多次余震,如只有一道防線,則在第一次破壞后再遭余震,將會因損傷積累導致倒塌。抗震結構體系應有最大可能數量的內部、外部冗余度,有意識地建立一系列分布的屈服區,主要耗能構件應有較高的延性和適當剛度,以使結構能吸收和耗散大量的地震能量,提高結構抗震性能,避免大震時倒塌。(3)適當處理結構構件的強弱關系,同一樓層內宜使主要耗能構件屈服后,其他抗側力構件仍處于彈性階段,使“有效屈服”保持較長階段,保證結構的延性和抗倒塌能力。

1.3對可能出現的薄弱部位,采取措施提高其抗震能力

(1)構件在強烈地震下不存在強度安全儲備,構件的實際承載能力分析是判斷薄弱部位的基礎。(2)要使樓層(部位)的實際承載能力和設計計算的彈性受力的比值在總體上保持一個相對均勻的變化,一旦樓層(部位)的比值有突變時,會由于塑性內力重分布導致塑性變形的集中。(3)要防止在局部上加強而忽視了整個結構各部位剛度、承載力的協調。(4)在抗震設計中有意識、有目的地控制薄弱層(部位),使之有足夠的變形能力又不使薄弱層發生轉移,這是提高結構總體抗震性能的有效手段。

1.4選擇合理的結構形式

抗震結構體系是抗震設計應考慮的關鍵問題。按結構材料分類,目前主要應用的結構體系有砌體結構、鋼結構、鋼筋混凝土結構、鋼-混凝土結構等;按結構形式分類,目前常見的有框架結構、剪力墻結構、框架剪力墻結構、簡體結構等。結構體系的確定受到抗震設防烈度、建筑高度、場地條件以及建筑材料、施工條件、經濟條件等諸多因素影響,是一個綜合的技術經濟問題,需進行周密考慮確定。

2、建筑抗震設計中存在的問題

2.1缺乏前期勘察資料

缺乏巖土工程勘察資料或資料不全。有的在擴初設計階段還缺建筑場地巖土工程的勘察資料,有的在擴初設計會審之后就直接進入了施工圖設計,有的在規劃設計或方案設計會審后就直接進入了施工圖設計。無巖土工程勘察資料,設計缺少了必要的依據。結構的平面布置中外形不規則、不對稱、凹凸變化尺度大、形心質心偏心大,同一結構單元內,結構平面形狀和剛度不均勻不對稱,平面長度過長等。

2.2部分建筑物高度過高

按我國現行高層建筑混凝土結構技術規程規定,在一定設防烈度和一定結構型式下,鋼筋混凝土高層建筑都有一個適宜的高度。在這個高度,抗震能力還是比較穩妥的,但是目前不少高層建筑超過了高度限制。在震力作用下,超高限建筑物的變形破壞性會發生很大的變化,建筑物的抗震能力下降,很多影響因素也發生變化,結構設計和工程預算的相應參數需要重新選取。

2.3地基的選取不合理

由于城市人口的增多和相對空間的縮小,不少建筑商忽略了這一問題,哪里商業空間大就在哪里建。建筑應選擇位于開闊平坦地帶的堅硬土場地或密實均勻中硬土場地,遠離河岸,不應垮在兩類土壤上,避開不利地形、不采用震陷土作天然地基,避免在斷層、山崖、滑坡、地陷等抗震危險地段建造房屋。建筑的地基選取不恰當可能導致抗震能力差。

2.4材料的選用不科學,結構體系不合理

在地震多發區,采用何種建筑材料或結構體系較為合理應該得到人們的重視。由于我國建筑結構主要以鋼筋混凝土核心筒為主,變形控制要以鋼筋混凝土結構的位移限值為基準。但因其彎曲變形的側移較大,靠剛度很小的鋼框架協同工作減小側移,不僅增大了鋼結構的負擔,而且效果不大,有時不得不加大混凝土的剛度或設置伸臂結構,形成加強層才能滿足規范側移限值。

2.5抗震設防烈度較低

許多專家提出,現行的建筑結構設計安全度已不能適應國情的需要,建筑結構設計的安全度水平應該大幅度提高。我國現行抗震設防標準是比較低的,中震相當于在規定的設計基準期內超越概率為lO%的地震烈度,較低的抗震設防烈度放松了建筑的抗震要求。

2.6平面布局的剛度不均

抗震設計要求建筑的平、立面布置宜規正、對稱,建筑的質量分布和剛度變化宜均勻,否則應考慮其不利影響。但有的平面設計存在嚴重的不對稱:一邊進深大,一邊進深小;一邊設計大開間,一邊為小房間;一邊墻落地承重,一邊又為柱承重。這些都對抗震極為不利。

3、建筑結構抗震設計的措施

3.1建筑選址要正確。

避免抗震危險地段,選擇對抗震有利的場地、地基和基礎在進行設計時,應根據工程需要,掌握地震活動情況和工程地質的有關資料,作出綜合評價,宜選擇堅硬土或開闊平坦密實均勻的中硬土等有利地段;避開軟弱土、液化土、河岸和邊坡邊緣,平面分布上成因、巖性、狀態明顯不均勻的土層等不利地段;同一結構單元不宜設置在性質截然不同的地基土上,也不宜部分采用天然地基,部分用樁基,當地基有軟弱黏性土、液化土、新近填土或嚴重不均勻土層時,宜加強基礎的整體性和剛度。

3.2合理的確定平立面布置。

建筑物的動力性能基本上取決于它的建筑布局和結構布置。建筑布局簡單合理,結構布置符合抗震原則,從而確保房屋具有良好的抗震性能。建筑物的平、立面布置宜規則、對稱,質量和剛度變化均勻,避免樓層錯層。對體形復雜的建筑物合理設置變形縫,在結構設計時要進行水平地震作用計算和內力調整,并應對薄弱部位采取有效的抗震構造措施,嚴格控制建筑物的高度和高寬比。

3.3 結構選型和結構布置要合理。

結構選型根據建筑的重要性、設防烈度、房屋高度、場地、地基、基礎、材料和施工等因素,經技術、經濟條件比較綜合確定。單從抗震角度考慮,作為一種好的結構形式,應具備下列性能:延性系數高;勻質性好;正交各向同性;構件的連接具有整體性、連續性和較好的延性,并能發揮材料的全部強度。結構布置遵循的原則是平面布置力求對稱,使構件分配的力均勻;豎向布置力求均勻,盡可能使其豎向剛度、強度變化均勻,避免出現薄弱層,并應盡可能降低房屋的重心。

3.4剛度、承載力和延性要匹配。

當結構具有較高的抗力時,其總體延性的要求可有所降低;反之,較低的抗力需要較高的延性要求相配合。地震時建筑物所受地震作用的大小與其動力特性密切相關,具有合理的剛度和承載力分布以及與之匹配的延性。提高結構的抗側剛度,往往是以提高工程造價及降低結構延性指標為代價的。要使建筑物具有很強的抗倒塌能力,最理想的是使結構中的所有構件都具有較高的延性,然而實際工程中很難做到。有選擇地提高結構中的重要構件以及關鍵桿件的延性是比較經濟有效的辦法。

4、結束語

抗震設計問題是一個非常復雜的過程,涉及面非常廣泛,需要在設計過程中考慮全面。在以后的設計過程中,還有許多方面需要我們進一步的探討和研究,我們也期待有更多新型抗震技術應用于建筑中來,減輕地震帶來的危害。

篇6

我國是一個地震災害比較嚴重的國家。隨著科學技術的不斷發展,我國的建筑結構抗震設計的方法隨著結構試驗、結構分析、地震學以及動力學的發展也在不斷的進步,在不斷學習國外經驗的基礎上,我國的震害調查、強震觀察的方法在不斷的成熟。但是,如何從我國的社會發展和地震環境的實際情況出發來提高建筑結構抗震性能,從而保持建筑物更加合理經濟、安全可靠,是結構抗震設計中的一項重要的任務。

1 建筑結構抗震設計中的問題

1.1 選擇建筑抗震場地的問題

如果施工的條件相同,不同工程地質條件下的建筑物在地震時會受到明顯不同的破壞程度。所以,選擇一個好的建筑場地是提高建筑物抗震性能的重要基礎,在場地選擇的過程中,要降低地震災害,盡可能地避開工程地質不良的抗震場地(比如河岸、邊坡邊緣、高聳孤立的山丘、非巖質陡坡、濕陷性黃土區域、液化土區域),選擇有利的建筑場地(比如中等風化、微風化的基巖,不含水的粘土層,密實的砂土層)。如果實在無法當避開不利區域的話,應該在場地采取抗震加強措施,應根據抗震設防類別、濕陷性黃土等級、地基液化,來采取措施提高地基的剛度和整體穩定性。比如,如果建筑地基的受力層范圍處在嚴重不均勻土層、軟弱粘性土層、新近填土時,要合理估計計算地基在地震時形成的不均勻沉降,從而采取加強上部結構和基礎的處理措施或者加固地基、樁基的措施來加強地基的承

載力。

1.2 選取房屋結構抗震機制的問題

1.2.1 房屋結構機制應有科學恰當的強度與剛度,能夠有力地規避房屋結構由于突然變化或者個別位置減弱構成薄弱位置,引發太大的應力聚集或者塑性產生變化聚集;對于或許形成的脆弱位置,應采用提升抗震水平的手段。

1.2.2 在房屋架構機制中應設計有科學的地震功能傳送通道與確定清楚的核算簡圖。另外,設置縱向房屋構件時,應盡量保持在垂直重力負荷作用下縱向房屋構件的壓應力多少平均;設置樓層蓋梁機制時,盡量保證垂直重力負載能夠通過距離最小的途徑傳送到縱向構件墻或者柱子上;設置轉換架構機制時,盡量保證從上面架構縱向構件傳過來的垂直重力負載能夠通過轉換層完成再次轉換。

1.2.3 在選取房屋架構機制時,應重視防止由于一些構件或者架構的損壞而讓總體房屋架構失去對重力負載的承受性能與抗震性能。房屋架構抗震設置的基本準則是架構應該具備內力再次分攤作用、優秀的變形性能、一定的贅余度等。進而在地震出現時,一些構件即便出現問題,其他構件仍然可以承載縱向負載,提升房屋架構的總體抗震穩固性。

1.3 房屋架構平面設置的規則性與對稱性問題

房屋的平面與立體的設置應遵照抗震理論基本設置準則,通常運用規則的房屋架構設置方案。依照房屋結構抗震設置規范的標準,對平面不規則或縱向不規則,或者兩者均不規則的房屋架構,應運用空間架構的核算模式;對樓板部分區域連接不暢或者表面凹凸不成規律時,應運用相對應的貼合樓層強度剛度變動的模型;脆弱位置應當注重相對應的內力加大系數,而且依照規范標準來對彈塑性形狀改變加以剖析,脆弱位置應采用抗震構造手段。

在房屋架構的抗震中,對稱性是不容忽視的。對稱性包含房屋平面的對稱、品質分布的對稱及房屋架構抗側剛度的對稱三個部分。保證這三個方面的對稱中心為同樣的位置是最優的抗震設置方案。國內的房屋結構中,架構的對稱性通常指的是抗側力主要架構的對稱。對稱的房屋架構有框架架構、簡體框架架構等。

房屋架構的規則性體現在以下四點:

1.3.1 在平面設置房屋抗側力的主要架構時,應當保證周圍結構與中心的剛度與強度平均分布,讓房屋的主要架構維持較強的強度與抗扭剛度,很大程度上防止了房屋在風力較大或者地震的扭矩影響下而產生很大的形狀改變造成非架構構件與架構構件的損壞。

1.3.2 在平面設置房屋抗側力的主要架構時,還應當重視保證同一主軸方向的所有抗側力架構剛度與強度位于平均形態。

1.3.3 建筑結構的抗側力主體結構沿著構成變化和豎向斷面也要保持均勻,避免出現突變。

1.3.4 建筑結構的抗側力主體結構的兩個主軸方向也要有比較接近的強度和剛度,還要有比較相近的變形特性。

總體來說,在建筑結構抗震設計中,一定要對建筑平、立面布置的規則性加以重視,在實際的工程中還應該對建筑結構抗震設計的規范規定給予高度的重視。

2 提高建筑結構抗震能力的改良方案

(1)對地震外力能量的吸收傳遞途徑進行恰當合理的布局,保證支墻、梁、柱的軸線處于同一平面,形成一個構件雙向抗側力結構體系。在地震作用下構件呈現出彎剪性破壞,有效地使建筑結構的整體抗震能力得到提高。

(2)要按照抗震等級來對梁、柱、墻的節點采取抗震構造措施,保證在地震作用下建筑物結構可以達到三個水準的設防標準。按照“強節點弱構件”、“強剪弱彎”、“強柱弱梁”的原則,來合理選擇柱截面的尺寸,注意構造配筋要求,控制柱的軸壓比,確保結構在地震作用下具有足夠的延性和承載力。

(3)進行多道抗震防線的設置。在一個抗震結構體系中,在地震作用下一部分延性好的構件可以擔負起第一道抗震防線的作用,而在第一道抗震防線屈服后其他構件才逐次形成第二、第三或更多道抗震防線,有效提高建筑結構的抗震安全性。各地區要根據所處區域的地質特征,提高抗震設防標準。

(4)在可能發生破壞性比較強的地震區域,建設、地震、科技等部門要對建筑技術規范進行嚴格的規定,從施工保障、材料選用、規劃設計、建房選址等方面來加強監督檢查和技術指導,保證建筑設施能夠符合抗震設防的基本要求。

(5)根據地震地區本身建筑物的特點來積極引用抗震減災新材料、新工藝、新技術,并且借鑒發達國家的技術和經驗,將其推廣應用到建筑抗震設計中。

(6)建筑結構抗震設計的管理者以及實施者也對建筑的抗震能力起到很大的作用。所以,必須提高抗震設計工作人員的整體素質,提升整個建筑的抗震工程

質量。

3 結語

經過多年來對建筑結構中抗震設計的研究,我國的抗震設計方法已經逐漸趨于成熟,但是還有許多需要完善的地方。我們要在嚴格按照建筑抗震規范要求的基礎上上,科學地合理地進行建筑抗震設計,保證建筑物的穩定性和可靠性,促進我國建筑結構抗震設計向著高水平方向發展。

參考文獻

[1] 方小丹,魏璉.關于建筑結構抗震設計若干問題的討論[J].建筑結構學報,2011,(12).

篇7

[1]劉烽鋒.對建筑結構設計中的思路優化探討[J].建筑工程技術與設計,2015,(9):497-497.

[2]周宏偉.芻議房屋結構設計中建筑結構設計優化方法的應用[J].四川水泥,2014,(12):283-283,286.

[3]周宏偉.芻議房屋結構設計中建筑結構設計優化方法的應用[J].四川水泥,2014,(12):313-314.

[4]周翱.房屋結構設計中建筑結構設計優化方法的應用探討[J].建筑工程技術與設計,2014,(22):710-710.

[5]梁輝輝,楊鑫.芻議房屋結構設計中建筑結構設計優化方法的應用[J].建筑工程技術與設計,2015,(14):390-390.

[6]伍后勝,龐宇.建筑結構設計優化技術在房屋結構設計中的實際應用[J].房地產導刊,2014,(18):114-114.

[7]樸洪立.建筑結構設計中優化方法研究[J].民營科技,2014,(7):145.

[8]劉立偉.建筑結構設計優化方法在房屋結構設計中的應用探究[J].商品與質量·理論研究,2014,(7):208-208.

建筑結構論文參考文獻:

[1]張世廉,董勇,潘承仕.建筑安全管理[M].2005

[2]陳肇元,土建結構工程與耐久性[M].2003

[3]楊云峰.淺談建筑結構抗震概念設計[j].科技創新導報.2009(11)

[4]王建軍.土建結構工程的安全性與耐久性[N].伊犁日報(漢),2006

[5]董心德,葉丹,張永平,蔡世連.復雜高層建筑結構基于性能的抗震設計概念[j].中國產業.2010(12)

建筑結構論文參考文獻:

[1]建筑抗震設計規范(GB50011-2001)

[2]混凝土結構設計規范(GB50010-2002)

[3]建筑結構雜志

[4]高層建筑結構概念設計

篇8

一、前言

建筑行業是我國重要的經濟增長行業之一,關系到居民的切身利益。我國是多地震國家,但我國目前對地震的預防能力較弱,地震給我國帶來了及其巨大的災害,因此,加強建筑設計中的抗震設計,是進一步保障我國居民生命財產安全的重要措施之一。目前我國高層混凝土建筑應用的范圍越來越廣泛,其綜合性和高集成性都使得高層建筑的抗震設計需要更為明確的重視,加強對高層混凝土建筑抗震設計,已經十分的迫切。

二、高層混凝土建筑結構中抗震設計的現狀和存在的問題

高層混凝土建筑是經濟發展的產物,高層建筑結構的設計尤其是在抗震結構設計上,我國雖然引進了一些西方歐美抗震設計理念,但缺乏符合本國實際的理論技術創新。很大方面存在著缺陷,主要表現在以下幾個方面。

1.高層混凝土建筑在結構防震設計中缺乏科學規范的理論指導,缺乏實際經驗的積累;而且我國對地質地震的認識尚不夠完善,對地震的成因,預測,防治研究不夠深入。因此,在進行高層建筑結構抗震設計時候,缺乏一定的科學依據,或依據的是不完善的理論。因此,難以在高層建筑結構設計中完美融合防震設計理念。

2.高層混凝土建筑結構設計中,設計立足于固定參數,而忽視了實際情況,設計完全依據“計算設計”完成。而且將一定的地震或力學參數做出固定的規范,比如,在我國地震設計研究中,把地震的降級系數統一規定為2.81,將小震賦予固定統計意義。而小震多用于結構設計中,結構截面承載能力設計和變形的檢驗計算,需要依據一定的實際情況而行。雙向板內力計算時,查用《建筑結構靜力計算手冊》的內力系數時,其泊松比取值為0。 而鋼筋混凝土材料的泊松比取值為1/6, 這在設計板時往往容易被忽略,在計算跨中彎矩時,未考慮引入泊松比后的計算公式,導致內力計算結果錯誤。

3,沒有能夠深入研究地震對建筑結構破壞的層次和順序,難以做到重視主體的設計且兼顧細節問題。沒有能根據實際情況靈活變通的運用抗震設計準則。

三、高層混凝土建筑結構抗震設計的方案

1. 高層混凝土建筑結構設計要從建筑的全局出發,全面考慮各種建筑部位的功能,在此基礎上,科學設計每個部分的構件,保證每個部件之間的契合,促使每個部件或者是若干部件組合起來可以完成某一特定的設計要求,滿足一定的現實需求,同時,通過抗震設計,使得每個構件都可以具有相應的承載力,當地震來襲時,每個構件都可以有著一定的先后破壞次序,整體組合構件將會有著更強大的承載力和柔性,從而延緩地震破壞的速度,消耗爆發的能量。增強建筑的整體抗震能力。

2.地基設計是進行建筑結構設計的基礎,因此,在房間結構抗震設計中,要科學避開山嘴,山包,陡坡,河流等不利因素,要本著堅硬,牢固,平坦,開闊的選址原則。親身實地,利用先進技術設備,進行地質勘探,山石水土監測,并取樣論證,科學嚴謹分析。力求使得整個地基牢固可靠,地質穩定無滲漏,無坍塌,無暗河,無熔巖,無火山等,從而保證整個地基不會因為承載力不均,而發生小范圍的坍塌,影響到整體承載能力和抗震能力設計。

3. 高層混凝土建筑物的動力性能基本上取決于其建筑布局和結構布置。建筑布局簡單合理,結構布置符合抗震原則,通過無數次的實驗表明,簡單、規則、對稱的建筑結構抗震能力強,對延緩地震烈度范圍延伸,消耗地震的能量,減少地震對整體結構的破壞,而且,對稱結構容易準確計算其地震反應。

4.抗震結構體系是抗震設計應考慮的關鍵問題。如果按結構材料分類,目前主要應用的結構體系有砌體結構、鋼結構、鋼筋混凝土結構、鋼-混凝土結構;若是按結構形式分類,目前常見的有框架結構、剪力墻結構、框架剪力墻結構、筒體結構。高層建筑結構抗震設計中,不同結構的抗震結構體系的承載力受到抗震設防烈度、建筑高度、場地條件以及建筑材料、施工條件、經濟條件等多種條件的影響,因此高層建筑結構抗震設計要綜合考慮,做到科學選擇,嚴謹設計。

5.結構良好的延性有助于減小地震作用,吸收與耗散地震能量,避免結構倒塌。因此,結構設計應力求避免構件的剪切破壞,爭取更多的構件實現彎曲破壞。始終遵循“強柱弱梁,強剪弱彎、強節點、弱錨固”原則。構件的破壞和退出工作,使整個結構從一種穩定體系過渡到另外一種穩定體系,致使結構的周期發生變化,以避免地震卓越周期長時間持續作用引起的共振效應。

6.在高層建筑結構抗震設計中,一般而言,要尤其注意其是由諸多構件共同組合在一起,因此,要進行整體化的對待。要充分調動各個構件的作用來完成整體建筑的抗震效果。當高層建筑的一些基本構件都失去了原有功能的時候,那么,在地震來臨后,很容易讓整體的建筑結構喪失對地震的抵抗能力。在這種情況下,很容易讓整個高層建筑坍塌,因此,要保證所有構件的功能協調,并確保所有的構件都能夠在地震作用下保證良好的性能,如此,可以增強建筑結構的整體抗震能力。

7.設計高層混凝土建筑和超高層建筑時,屋頂建筑抗震設計也是整個設計的一個重要環節。近幾十年來,從多數高層建筑抗震設計評定結果看,屋頂建筑設計還存在一些問題,例如:屋頂設計較高或者設計過重。屋頂設計較高或者設計過重,無形當中加大了屋頂建筑變形,而且也加大地震作用,尤其對自身和屋頂之下的建筑物的抗震作用都不利。有時屋頂建筑的重心和屋頂之下的中心不在同一直線上,如果屋頂的抗側力墻和屋頂之下的抗側力墻出現間斷,在地震發生時,帶來的地震扭轉作用也會更嚴重,對抗震更不利。所以,在進行屋頂建筑設計過程中時,應該最大限度的降低屋頂建筑的高度。選用強度較高、輕質、剛度均勻的材料,使得地震作用傳遞不受阻礙;屋頂重心和屋頂之下的建筑中心在同一直線上;如果屋頂建筑非常高,屋頂建筑就必須具有較強的抗震性,讓屋頂建筑地震作用和突變降低到最小,盡量避免發生扭轉效應。

四、結束語

隨著我國經濟的發展和人民生活水平的提高,在目前的發展趨勢中,高層建筑結構設計的主流趨勢有低碳,環保,安全,節能,生態。其中指標之一,就是建筑的安全性,而我國目前破壞力最大的安全威脅便是地震,因此,加強對高層建筑結構的抗震設計,必將會被提升到建筑設計新的戰略高度。要科學合理的設計好房間結構,增強抗震能力,設計人員不僅要大力提升自己的力學,建筑學,設計學等各方面的專業知識和制圖技能,更要培養嚴謹縝密的態度,深刻理解設計規范,深刻了解建筑結構中的每個構件,做好每個構件,從整體構思,不斷提高設計水平和設計質量,提升建筑結構的質量,為完美實現建筑的實用價值和美學價值的融合做出貢獻。

參考文獻:

[1]宮彩紅,才永杰 試析高層混凝土建筑抗震結構設計[期刊論文] 《城市建設理論研究(電子版)》 -2012年9期-

篇9

1 荷載作用方式

相同點:兩者均為偶然荷載,均為動荷載,設計時均按一次作用考慮。不同點:人防結構構件如果暴露于空氣中則直接承受空氣沖擊波的作用,如果埋于土中直接承受土中壓縮波的作用,因此人防荷載對結構構件外表面的是直接作用,其動荷載直接作用于構件,其作用為外力;而地震動荷載則是由于地震時地面運動引起的動態作用,其實質是慣性力,是間接的作用。建筑物的所有構件(只要有質量)均會由于地震動而存在慣性力。人防動荷載一般是直接作用于人防地下室外表面的構件,一般可按同時作用于圍護結構考慮,而人防地下室內部的墻柱等構件只間接承受圍護構件及上部結構傳來的動荷載。

2 荷載的大小

人防動荷載(即常規武器或核武器爆炸動荷載)其沖擊波壓力是隨時間變化的,為方便設計計算《人防規范》將它簡化成等效靜荷載,它只代表作用效果的等效,等效靜荷載并不是實際作用的力,但它方便了設計計算可以用靜力分析的模式進行內力計算;設計時等效靜荷載的大小的確定主要與設防抗力等級有關。

地震作用大小首先與震級、烈度、震源深度、建筑物離震源的距離等有關。其次與建筑物的質量大小、建筑物所處的場地條件及土質、及建筑物的動力特性(如自振周期、振型、阻尼等)有關。

3 設計方法:

抗震設計方法通常為“三水準、二階段”的設計方法,設防目標為“小震不壞,中震可修,大震不倒”。為實現設防目標取小震下地震動參數計算結構彈性下的地震作用效應,進行截面承載力驗算。第二階段是大震下的結構彈塑性變形驗算。并通過概念設計和抗震構造措施來滿第三水準的設計要求。

人防結構設計的動力分析一般采用等效靜荷載法:由于在動荷載作用下,結構構件振型與相應靜荷載作用下撓曲線很相近,且動荷載作用下結構構件的破壞規律與相應靜荷載作用下破壞規律基本一致,所以在動力分析時,可將結構構件簡化為單自由度體系,用動力系數乘以動荷載峰值得到等效靜荷載,這時結構構件在等效靜荷載作用下的各項內力就是動荷載作用下相應內力的最大值。按等效靜荷載分析計算的模式代替動力分析,給防空地下室結構設計帶來很大方便。采用等效靜荷載分析時,為滿足抗力要求,結構材料參數應乘以材料強度綜合調整系數。最后結構構件在動荷載作用下的變形極限用允許延性比[β]來控制。按允許延性比進行彈塑性工作階段的防空地下室,即可認為滿足防護和密閉要求。 轉貼于

4 設計原則:

人防設計與抗震結構設計的設計原則一樣:

4.1 結構應盡可能有足夠的延性,避免脆性破壞,鋼筋砼結構構件均應采取“強柱弱梁”“強剪弱彎”的設計原則。

4.2 各結構構件抗力相協調的原則,避免出現薄弱部位。防空地下室的結構,應充分考慮各部位作用荷載值不同,破壞形態不同以及安全儲備不同等因素,保證在規定的動荷載作用下,結構各部位(如出入口和主體結構)都能正常地工作,防止由于存在個別薄弱環節致使整個結構抗力明顯降低。如果某個部位失效,將導致整個人防區失效。同樣抗震設計也十分強調避免出現薄弱環節(如薄弱層,軟弱層等),因為大震時薄弱層或軟弱層出失效將導致建筑物倒塌,產生嚴重后果。

5 提高延性的設計構造措施

核武器與常規武器爆炸均屬于偶然性荷載,具有量值大,作用時間短且不斷衰減的特點,結構構件承受動荷載時已經處于彈塑性工作階段,因此,結構構件具有較大的延性,對吸收動能,抵抗動荷載是十分有利的。人防結構設計時,構造上應采取“強剪弱彎” “強柱弱梁”“強節點弱桿件”的設計原則。如可充分利用受彎構件和大偏心受壓構件的變形吸收武器爆炸動荷載作用的能量,以減輕支座截面的抗剪與柱子抗壓的負擔,確保結構在屈服前不出現剪切破壞和屈服后有足夠的延性,最終形成塑性破壞,提高結構的整體承載能力;又如受彎構件應雙面配筋,對承受動荷載作用下可能的回彈和防止在大撓度情況下構件坍塌十分重要,另外在節點區應有足夠的抗剪、抗壓能力和足夠的鋼筋錨固長度。上述這些措施和抗震設計的原則是一致的。

篇10

1.問題產生

隨著房地產市場由粗獷型向集約型方向的發展,業主對工程造價的重視程度大為提高,甚至超越了建筑專業功能、外觀等苛刻要求。論文格式。工程設計造價的高低成為承接工程設計的先決條件,因此根據建筑功能選擇結構受力特性良好、經濟性能優越的結構體系方案,成為結構設計人員必須面對的課題。

所謂小高層住宅,通常是指十一層加躍層(2006住宅設計規范規定十一層)以下的高層住宅。對結構設計來說有如下可行的結構體系方案:剪力墻結構、框架剪力墻結構、短肢剪力墻結構、異型柱框架剪力墻結構。本文結合實際工程,對以上四種結構形式的受力分析,經濟造價進行綜合比較,為類似工程的設計,提供了值得借鑒的有益經驗。

以某位于沿海地區大型城市,地下一層、地上11層小高層住宅為例,高度35米,設計風荷載按C類地面粗糙度,基本風壓0.5KN/m2設計,抗震設防烈度為七度第一組,設計基本地震加速度值0.1g,建筑抗震類別為乙類,結構安全等級為二級, 建筑場地土類別為II類,設計使用年限為50年。

2.各結構體系受力性能

2.1 剪力墻結構:

剪力墻結構通常是指布置的墻體其剪力墻肢肢長和肢厚比大于8的結構,特點是整體性能好,側向剛度大,水平力下側向位移小,并且由于沒有梁柱等外露與凸出,便于房間布置。是一種傳統、成熟、受力性能良好的結構形式,其缺點是結構墻體相對多、剛度和自重較大,一段時間以來應用減少。隨著2002新規范的應用,該結構又顯示出無窮的生命力。現在小高層住宅剪力墻結構,不再是以往大面積的墻體布置,而是緊扣規范條文,適當控制墻肢肢長和肢厚比的限值,使之稍微大于8,從而減少結構剛度和地震力,避開高規對短肢剪力墻結構近乎苛刻的限值,達到減少造價的目的。

2.2 框架剪力墻結構:

是指由普通框架柱和一般剪力墻共同組成的一種結構形式,由框架和剪力墻共同承擔豎向和水平荷載,它結合框架和剪力墻受力的優點,又能獲得較大空間房屋,但是由于現在建筑平面布置的靈活性,框架布置非常復雜,很難形成規則的受力體系,并且隨著房間布局的變化,容易產生柱楞和凸出的大梁,影響外觀和使用功能,同時由于多次受力轉換,降低梁板受力性能,增加了結構造價。論文格式。因此除特別規則住宅建筑采用外,目前小高層住宅設計中較少采用。

2.3 短肢剪力墻結構:

短肢剪力墻結構是十多年前由南方沿海發展開來的一種結構形式,為避免剪力墻結構剛度太大的缺點,適當減少墻體長度,使剪力墻墻體肢長和肢厚比取5~8倍。在設計之初,由于沒有明確國家規范,設計理論、計算方法和構造措施均參照剪力墻結構設計進行,因此設計隨意性較大,不夠科學嚴謹。在2002年新修訂的高層建筑混凝土結構規程(JGJ3-2002)才明確了具體設計方法。由于該結構在地震區經驗不多,為安全起見,對這種結構設計的最大適用高度、使用范圍、抗震等級、一般剪力墻承受的地震傾覆力矩、墻肢厚度、軸壓比、截面剪力設計值、縱向鋼筋配筋率都作了非常嚴格規定。尤其是高規7.1.2.2規定:抗震設計時,筒體和一般剪力墻承擔的第一振型底部地震傾覆力矩不宜小于結構總底部地震傾覆力矩的50%;高規7.1.2.3規定:短肢剪力墻的抗震等級比一般剪力墻提高一級采用;高規7.1.2.4規定:短肢剪力墻軸壓比提高0.1到0.2;高規7.1.2.5規定:短肢剪力墻根據抗震等級不同,剪力設計值乘以1.4和1.2增大系數;高規7.1.2.6規定:短肢剪力墻全部縱向鋼筋配筋率對底部加強區不宜小于1.2%,其它部位不宜小于1.0%;高規7.1.2.7規定:墻肢厚度不應小于200。一系列規范條文的限制,使結構造價直線提高,因此此類結構形式在小高層住宅中的運用迅速減少。論文格式。

2.4 異型柱框架剪力墻結構:

異型柱框架剪力墻結構,是由天津市異型柱規程(DB29-16-98)和廣東省異型柱規程(DBJ/T15-15-95)等地方規程發展起來的新型結構形式,墻體肢高和肢厚比不大于4,柱肢受力特性復雜,由于該結構形式抗震性能存在很多爭議,過去由于一直沒有得到國家規程承認,在很多地方因需通過超限審查而受到限值。經過近幾年不懈試驗研究,終于通過國家抗震規范審查,今年八月一日正是以國家規程(JGJ149-2006)的形式生效,從而使結構設計人員有了可靠權威的設計依據。對這種結構形式,規程對其最大適用高度、使用范圍、抗震等級、一般剪力墻承受的地震傾覆力矩、墻肢厚度、軸壓比、截面剪力設計值、縱向鋼筋配筋率、體積配箍率等也都作了嚴格規定。同時由于結構斷面較小,規范5.3.1強制條文規定應進行梁柱核心區受剪承載力計算。該結構是發展了框架剪力墻結構,同時避免了框剪結構適用性不好的缺點,受到業主和用戶歡迎,但是必須明確,由于異型柱斷面很小,梁柱節點核心區鋼筋密集,施工振搗困難,從而使之力學性能和抗震性能受到削弱,需仔細進行核心區計算。這種結構形式是我國目前迎合中國經濟還不是很富裕、渴望減少土建造價的國情的獨創,隨著綜合國力的提高,其發展前景必然會受到一定限制。

各結構體系經濟比較

篇11

Key words: concept design structure design application importance

中圖分類號:TU318文獻標識碼:A文章編號:

一、概念設計的涵義

所謂的概念設計一般指不經數值計算,尤其在一些難以作出精確理性分析或在規范中難以規定的問題中,依據整體結構體系與分體系之間的力學關系、結構破壞機理、震害、試驗現象和工程經驗所獲得的基本設計原則和設計思想,從整體的角度來確定建筑結構的總體布置和抗震細部措施的宏觀控制。運用概念性近似估算方法,可以在建筑設計的方案階段迅速、有效地對結構體系進行構思、比較與選擇,易于手算。所得方案往往概念清晰、定性正確,避免后期設計階段一些不必要的繁瑣運算,具有較好的的經濟可靠性能。同時,也是判斷計算機內力分析輸出數據可靠與否的主要依據。

對建筑物抗震來說,從宏觀原則上進行評價、鑒別、選擇等處理,再輔以必要的計算和構造措施。從而消除建筑物抗震的薄弱環節,以達到合理抗震設計的目的。也就是說概念設計是工程師運用思維和判斷力,根據從大量震害經驗得出的結構抗震原則,從宏觀上確定結構設計中的基本問題。因此,工程師必須從主體上了解結構抗震特點,振動中結構的受力特征,抓住要點,突出主要矛盾,用正確的概念來指導概念設計,才會獲得成功。由于概念設計包括的范圍極廣,因此不僅僅要分析總體方案確定的原則,還要顧及非材料的正確使用和關鍵部位的細部構造。但是首先和最重要的還是結構總體概念設計、材料選型和細部構造等問題,這些設計原則和結構概念中,較為重要的是結構總體設計。

二、概念設計的重要性

概念設計是展現先進設計思想的關鍵,一結構工程師的主要任務就是在特定的建筑空間中用整體的概念來完成結構總體方案的設計,并能有意識地處理構件與結構、結構與結構的關系。強調概念設計的重要,主要還因為現行的結構設計理論與計算理論存在許多缺陷或不可計算性,比如對混凝土結構設計,內力計算是基于彈性理論的計算方法,而截面設計卻是基于塑性理論的極限狀態設計方法,這一矛盾使計算結果與結構的實際受力狀態差之甚遠,為了彌補這類計算理論的缺陷,或者實現對實際存在的大量無法計算的結構構件的設計,都需要優秀的概念設計與結構措施來滿足結構設計的目的。同時計算機結果的高精度特點,往往給結構設計人員帶來對結構工作性能的誤解,結構工程師只有加強結構概念的培養,才能比較客觀、真實地理解結構的工作性能。概念設計之所以重要,還在于在方案設計階段,初步設計過程是不能借助于計算機來實現的。

三、概念設計在結構設計中的應用

所謂的概念設計一般指不經數值計算,尤其在一些難以作出精確理性分析或在規范中難以規定的問題中,依據整體結構體系與分體系之間的力學關系、結構破壞機理、震害、試驗現象和工程經驗所獲得的基本設計原則和設計思想,從整體的角度來確定建筑結構的總體布置和抗震細部措施的宏觀控制。運用概念性近似估算方法,可以在建筑設計的方案階段迅速、有效地對結構體系進行構思、比較與選擇,易于手算。所得方案往往概念清晰、定性正確,避免后期設計階段一些不必要的繁瑣運算,具有較好的經濟可靠性能。同時,也是判斷計算機內力分析輸出數據可靠與否的主要依據。

運用概念設計的思想,也使得結構設計的思路得到了拓寬。傳統的結構計算理論的研究和結構設計似乎只關注如何提高結構抗力R,以至混凝土的等級越用越高,配筋量越來越大,造價越來越高。結構工程師往往只注意到不超過最大配筋率,結果肥梁、胖柱、深基礎處處可見。以抗震設計為例,一般是根據初定的尺寸、砼等級算出結構的剛度,再由結構剛度算出地震力,然后算配筋。但是大家知道,結構剛度越大,地震作用效應越大,配筋越多,剛度越大,地震力就越強。這樣為抵御地震而配的鋼筋,增加了結構的剛度,反而使地震作用效應增強。其實,為什么不考慮降低作用效應S呢?目前在抗震設計中,隔震消能的研究就是一個很好的例子。隔震消能的一般作法是在基礎與主體之間設柔性隔震層;加設消能支撐(類似于阻尼器的裝置);有的在建筑物頂部裝一個“反擺”,地震時它的位移方向與建筑物頂部的位移相反,從對建筑物的振動加大阻尼作用,降低加速度,減少建筑物的位移,來降低地震作用效應。合理設計可降低地震作用效應達60%,并提高屋內物品的安全性。這一研究在國內外正廣泛地深入展開。在日本,研究成果已經廣泛應用于實際工程中,取得良好的經濟、適用效果。而我國由于經濟、技術和人們認識的限制,在工程界還未被廣泛地應用。

四、小結

隨著社會經濟的發展和人們生活水平的提高,對建筑結構設計也提出了更高的要求。發展先進計算理論,加強計算機的應用,加快新型高強、輕質、環保建材的研究與應用,使建筑結構設計更加安全、適用、可靠、經濟是當務之急。其中,打破建筑結構設計中的墨守成規,充分發揮結構工程師的創新能力,是相當必要的。因為他們是結構設計革命的推動者和執行者。這則需要工程界和教育界進行共同的努力。推廣概念設計思想是一種有效的辦法。

著名的美國工程院院士林同炎教授在《結構概念和體系》一書中為結構工程師提供了廣泛而又有獨特見解的結構概念設計基礎知識和設計實例。該書著重介紹用整體概念來規劃結果總體方案的方法,以及結構總體系和個分體系尖的相互力學關系和簡化近似設計方法。為結構工程師和建筑師在設計中創造性地相互配合,設計出令人滿意的建筑奠定基礎。這本書第二版的出版,為我們更好的加深概念設計的理解,提供有益的幫助。總之,概念設計必然會成為今后結構設計的主流思想,這就讓我們來共同學習、發展它吧,為結構設計的發展作出應有的貢獻。

參考文獻:

[1]林同炎,S.D.思多臺斯伯利.結構概念和體系.中國建筑工業出版社.

篇12

地震是一種隨機振動,所以建筑結構設計人員為防止、減少地震給建筑造成的危害, 就需要分析研究建筑抗震問題不斷總結工程經驗,妥善處理這一工程問題。

一、實行建筑抗震設計規范,總結工程經驗妥善處理工程問題:

(一)選擇有利的抗震場地

地震造成建筑物的破壞, 除地震動直接引起的結構破壞外,場地條件也是一個重要的原因。地震引起的地表錯動與地裂,地基土的小均勻沉陷, 滑坡和粉、砂土液化等。科技論文。因此,應選擇對建筑抗震有利的地段, 應避開對抗震不利地段。當無法避開時, 應采取適當的抗震加強措施,應根據抗震設防類別、地基液化等級,分別采取加強地基和上部結構整體性和剛度、部分消除或全部消除地基液化沉陷的措施; 當地基主要受力層范圍內存在軟弱粘性土層、新近填土和嚴重不均勻土層時,應估計地震時地基不均勻沉降或其他不利影響, 采用樁基、地基加固和加強基礎和上部結構的處理措施; 對于地震時可能導致滑移或地裂的場地,應采取相應的地基穩定措施。

(二)優化的平面和立面布置

關于建筑結構設計的平面與立體結構, 我們根據認為有以下幾個方面可以參考:

1、結構的簡單性。結構簡單是指結構在地震作用下具有直接和明確的傳力途徑。只有結構簡單,才能夠對結構的計算模型、內力與位移分析, 限制薄弱部位的出現易于把握,因而對結構抗震性能的估計也比較可靠。

2、結構的剛度和抗震能力。水平地震作用是雙向的,結構布置應使結構能抵抗任意方向的地震作用。通常, 可使結構沿平面上兩個主軸方向具有足夠的剛度和抗震能力, 結構的抗震能力則是結構強度及延性的綜合反映。結構剛度的選擇既要減少地震作用效應又要注意控制結構變形的增大, 過大的變形會產生重力二階效應, 導致結構破壞、失穩。論文參考網。

3、結構的整體性。在高層建筑結構中,樓蓋對于結構的整體性起到非常重要的作用,樓蓋相當于水平隔板,它不僅聚集和傳遞慣性力到各個豎向抗側力子結構, 而且要求這些子結構能協同承受地震作用, 特別是當豎向抗側力子結構布置不均勻或布置復雜或抗側力子結構水平變形特征不同時, 整個結構就要依靠樓蓋使抗側力子結構能協同工作。

(三)設置多道設防的抗震結構體系

多道抗震防線, 是指在一個抗震結構體系中, 一部分延性好的構件在地震作用下, 首先達到屈服, 充分發揮其吸收和耗散地震能量的作用, 即擔負起第一道抗震防線的作用, 其他構件則在第一道抗震防線屈服后才依次屈服,從而形成第二、第三或更多道抗震防線, 這樣的結構體系對保證結構的抗震安全性是非常有效的。同時底框建筑底層高度不宜太高, 應控制在4.5m 以下。高度加大, 底層剛度減小, 重心提高, 使框架柱的長細比增大, 更容易產生失穩現象。論文參考網。而且由于高度較大,很多建筑房間被業主一層改成了兩層, 造成了較大的安全隱患。科技論文。宜具有合理的剛度和強度分布, 避免因局部削弱或突變形成薄弱部位.產生過大的應力集中或塑性變形集中;可能出現的薄弱部位, 應采取措施提高抗震能力。

(四)保證結構的延性抗震能力

合理選擇了建筑結構后, 就需要通過抗震措施來保證結構確實具有所需的延性抗震能力,從而保證結構在中震、大震下實現抗震設防目標, 系統的抗震措施包括以下幾個方面內容。強柱弱梁: 人為增大柱相對于梁的抗彎能力,使鋼筋混凝土框架在大震下,梁端塑性鉸出現較早,在達到最大非線性位移時塑性轉動較大; 而柱端塑性鉸出現較晚, 在達到最大非線性位移時塑性轉動較小,甚至根本不出現塑性鉸。從而保證框架具有一個較為穩定的塑性耗能機構和較大的塑性耗能能力。強剪弱彎: 剪切破壞基本上沒有延性, 一旦某部位發生剪切破壞, 該部位就將徹底退出結構抗震能力, 對于柱端的剪切破壞還可能導致結構的局部或整體倒塌。因此可以人為增大柱端、梁端、節點的組合剪力值, 使結構能在大震下的交替非彈性變形中其任何構件都不會先發生剪切破壞。

(五)合理的建筑結構參數設計計算分析

對于復雜結構進行多遇地震作用下的內力和變形分析時, 應采用不少于兩個不同的力學模型,目前主要有兩種計算理論: 剪摩理論和主拉應力理論, 它們有各自的適用范圍:磚砌體一般采用主拉應力理論,而砌塊結構可采用剪摩理論。對計算機的計算結果, 應經分析判斷確認其合理、有效后方可用于工程設計。結構計算控制的主要計算結果有結構的自振周期、位移、平動及扭轉系數、層間剛度比、剪重比、有效質量系數等。另外, 地下室水平位移嵌固位置,轉換層剛度是否滿足要求等, 都要求有層剛度作為依據。復雜高層建筑抗震計算時,宜考慮平扭耦聯計算結構的扭轉效應, 振型數不應小于15,對多塔結構的振型數不應小手塔樓數的9 倍, 且計算振型數應使振型參與質量不小于總質量的90%。總之, 高層結構計算很難一次完成,應根據試算結果, 按上述要求多次調整,才能得到較為合理的計算結果,以保證建筑物的安全。

二、高層建筑抗震設計中經常出現的問題

(一)部分建筑物高度過高

按我國現行高層建筑混凝土結構技術規程規定,在一定設防烈度和一定結構型式下,鋼筋混凝土高層建筑都有一個適宜的高度。在這個高度,抗震能力還是比較穩妥的,但是目前不少高層建筑超過了高度限制。在震力作用下,超高限建筑物的變形破壞性會發生很大的變化,建筑物的抗震能力下降,很多影響因素也發生變化,結構設計和工程預算的相應參數需要重新選取。

(二)地基的選取不合理

由于城市人口的增多和相對空間的縮小,不少建筑商忽略了這一問題,哪里商業空間大就在哪里建。高層建筑應選擇位于開闊平坦地帶的堅硬土場地或密實均勻中硬土場地,遠離河岸,不應垮在兩類土壤上,避開不利地形、不采用震陷土作天然地基,避免在斷層、山崖、滑坡、地陷等抗震危險地段建造房屋。高層建筑的地基選取不恰當可能導致抗震能力差。

(三)材料的選用不科學,結構體系不合理

在地震多發區,采用何種建筑材料或結構體系較為合理應該得到人們的重視。由于我國建筑結構主要以鋼筋混凝土核心筒為主,變形控制要以鋼筋混凝土結構的位移限值為基準。但因其彎曲變形的側移較大,靠剛度很小的鋼框架協同工作減小側移,不僅增大了鋼結構的負擔,而且效果不大,有時不得不加大混凝土的剛度或設置伸臂結構,形成加強層才能滿足規范側移限值。

(四)較低的抗震設防烈度

許多專家提出,現行的建筑結構設計安全度已不能適應國情的需要,建筑結構設計的安全度水平應該大幅度提高。我國現行抗震設防標準是比較低的,中震相當于在規定的設計基準期內超越概率為lO%的地震烈度,較低的抗震設防烈度放松了高層建筑的抗震要求。論文參考網。科技論文。

三、結語

篇13

一直以來,支撐和滿足建筑空間嘴重要的一個體系就是建筑結構,結構設計它是一門非常具有學問的學科,隨著科學技術不斷發展,和新技術的不斷進步,建筑結構設計也在不斷地進步著。即便如此,它的基本原理卻是一成不變的,因此,結構設計最根本的理論依據就非這些基本原理構莫屬了。雖然我們并不會經常在工程師的圖紙上看到這些基本原理,但是有一點我們不能否認,那就是始終指導與貫穿著結構設計全過程的正是這些基本原理。在實際操作之中, 因為不同的原因, 結構設計人員容易在砌體結構設計、屋面梁與配筋、高層建筑結構的設計等等環節出現一些問題,導致失誤。主要問題有以下幾點:

1 砌體結構的設計

1.1 多層砌體房屋的建筑局部尺寸都不能滿足抗震要求,此部位沒有設構造筋。國家有關條例規定,抗震設防烈度為6度、7度時,承重窗間墻最小寬度、承重外墻盡端至門窗洞邊的最小距離、非承重外墻盡端至門窗洞邊的最小距離、內墻陽角至門窗洞邊的最小距離不應當小于lm。結構破壞最容易的地方就是這些局部部位,在這些部位不能滿足要求的條件下,結構設計應采取一定的彌補措施,例如:采取加強的構造柱、增加橫向配筋等措施。

1.2 房屋四角與其余部位構造柱采用一樣的配筋。建筑抗震有關規定,房屋四角構造柱可適當加大配筋和截面。有些設計人員不論什么部位,都采用一樣的設置,這種做法會導致各種柱體的作用得不到充分發揮,還會造成浪費。比如房屋外墻最容易損壞的部位就是它的四個角,在構造柱的設計上面,應當適當的加強。

1.3 砌體結構布置方式可以有幾下分析:橫墻共同承重的結構布置。對于空間較大的,設有沿進深方向的梁支承于縱墻上,就讓縱墻來承擔其重量。樓板沿縱向擱置, 就會形成橫墻承擔重量,橫墻間距不入,一般就能滿足抗震的需求,,同時縱墻因為存在軸壓力,所以就提高了抗剪的能力。另一方案就是縱墻承重與橫墻承重沿豎向交替布置,但是此種方案在實際操作中使用的并不多見。縱墻承重的結構布置方案,橫墻間距大、數量小,并且軸壓力較小,所以對抗震極其不利,縱墻多容易引起彎曲破壞所以在選用的時候要小心謹慎才是。混合承重結構布置的方式較為各異 ,,比如內框架砌體結構、底層框架砌體結構和局部框架砌體結構等等。此結構體系由兩種結構體系組成,彈性模量以及動力性能兩種,這兩個組成部分相差較大,所以抗震結構形式并不是很好。但它能滿足建筑使用的要求。使用空間也很大。總之,選擇哪種砌體結構是抗震結構設計中的關鍵環節,應當從抗震的概念設計出發,綜合建筑使用功能、技術、經濟和施工等方面來正確選擇。

2 屋面梁和配筋

2.1 屋面梁配筋太少。結構建模時,設計人員為了方便,屋面梁直接使用和層梁一樣的尺寸。因為屋面梁荷載很小,計算結果配筋很少,因此屋面梁在溫度變化、混凝土收縮和受力等作用下因配筋率過低導致裂縫寬度較大。

2.2 受扭屋面梁缺少必要的腰筋。對于一般的梁,為了保持鋼筋骨架的剛度,同時為了承受溫度和收縮應力及防止梁腹出現過大的裂縫,一般構造措施為梁腹板高度大于450mm時加設腰筋,它的間距要小于200mm,然后拉筋勾連。對于受扭構件有關條例的規定,其縱向受力鋼筋的間距應小于200mm與梁截面短邊長度。對于設置懸挑檐口的屋面梁,在結構設計中誤等同一般梁,未按受扭構件設計配筋。

2.3 樓層平面剛度。一些設計在缺乏基本的結構觀念以及結構布置缺乏必要措施的時候,采用樓板變形的計算程序。即使程序的編程在數學力學模型上是成立的,甚至是準確無誤的,可是在確定樓板變形程度上卻很難做得非常精確。首先計算的大前提都做不到“精確”,就更不要指望其結果會“正確”了。據此進行的結構設計肯定存在著結構不安全成分或者結構某些部位或構件安全儲備過大等現象。為了使程序的計算結果基本上反映結構的真實受力狀況而不會導致根本性的誤差,設計時就要盡量將樓層設計成剛性樓面。

3 高層建筑結構的設計

在高層建筑結構設計中, 高層建筑結構平面和立面形式的選擇,要讓建筑的三心,即幾何形心、剛度中心和結構重心盡量匯于一點,也就是三心合一。加入在結構設計中不能做到這一點,那么就會產生扭轉問題。扭轉問題就是結構在水平荷載作用下發生的扭轉振動效應。 它在風載等水平荷載載荷情況下會對結構產生危害,為避免由此產生的危害,就要求在結構設計的同時,選擇合理的結構形式以及平面布局,盡量地讓建筑物達到三心合一的效果,因此在選擇的時候,平面以及立面形式是極其關鍵的。高層建筑的平面一般要采用簡單、規則和對稱的形狀,而至于非常復雜的平面形式,是要盡量避免使用的,以往震害的資料表明,高層建筑物容易造成震害的主要原因就在于。平面布置不對稱、過多的外凸和內凹等復雜形式。在高層結構的抗震設計中,結構體系的選擇、布置和構造措施比軟件的計算結果是否精確更能影響結構的安全,不僅要考慮結構安全因素,而且要綜合考慮建筑美觀、結構合理和便于施工以及工程造價等多方面因素。資料及力學分析表明,在不對稱結構中,結構在凹凸拐角等處容易造成應力集中,因此會帶來破壞,在實際應用中應盡量避免。至于完全對稱的結構,也應注意凸出部分的尺寸比例。對于凸出部分過長的,結構設計中就應采取相應的補救措施。結構的豎向布置要盡力做到剛度均勻并連續,避免結構的剛度突變及出現軟弱層。剛度突變和軟弱層的出現一般都是由于切斷剪力墻造成的,如果在結構設計中要求一定要切斷少數剪力墻時,其他剪力墻在該切斷層處就要必須加強。總之,標新立異的平面和立面設計是以結構的抗震及安全性能為代價的。

4 總結

建筑結構設計的推動者和執行者就是結構工程師。因此。想要讓建筑結構設計更加可靠、經濟、安全、適用,就必須充分發揮結構工程師的突破能力。這就需要工程界和教育界直接共同配合。不但要加強計算機的應用,加快新型高強、輕質、環保建材的研究應用,還要推廣概念設計思想。相信在我們的共同努力與配合下,我們的設計水平一定會有很大的提高。

參考文獻

[1]高長遠,馬文明,付麗麗等,.結構設計的新思路《大科技》2009年。

[2]劉連江,牛莉,高層結構設計的主要問題 ,《城市建設》2007年。

主站蜘蛛池模板: 桐城市| 石林| 湖北省| 苏州市| 界首市| 梁平县| 汨罗市| 大余县| 凤台县| 肥西县| 凤山市| 福州市| 锦州市| 博客| 仁寿县| 兴海县| 开封市| 台北县| 龙井市| 六枝特区| 盐津县| 彩票| 遂川县| 苏州市| 黑山县| 连州市| 高要市| 兰州市| 吴川市| 揭东县| 文成县| 青阳县| 乌拉特中旗| 临潭县| 郸城县| 波密县| 七台河市| 香格里拉县| 南漳县| 长泰县| 长海县|