引論:我們為您整理了13篇光通信論文范文,供您借鑒以豐富您的創作。它們是您寫作時的寶貴資源,期望它們能夠激發您的創作靈感,讓您的文章更具深度。
篇1
光通信技術的發展前景
1光纖通信技術的發展前景
為了更好的建設下一代網絡就必須得構建一個擁有巨大傳輸容量的光纖基礎設施,而由于光纜高達20年的壽命以及過高的造價,光纖基礎設施的設計和構建必須具有前瞻性,應該結合設備和系統技術的發展趨勢來設計。同時由于下一代電信網對容量的高要求以及頻率的高寬度,這一代的光纖性能已經無法滿足需求,必將被淘汰,那么開發新一代的光纖將勢在必行。在G.652.A光纖的基礎上進行改進并取得一定成果的G.652C/D光纖很好的解決了色散斜率的問題,減低系統成本,而且能實現更長距離和更大容量的傳輸。基于這些原因,具有更長使用壽命的新一代光纖必將得到更好的發展。
篇2
(1)穩定頻率技術。相干光通信中,保持激光器的頻率穩定性是一個重要的前提條件。在零差檢測相干光通信系統中,如果激光器的波長或頻率隨著工作條件的變化而產生漂移,那就難以保證本振光信號與接收光信號頻率之間的相對穩定。外差檢測相干光通信系統也是如此。為了保證相干光通信系統的正常工作,必須確保光載波和光本振蕩器的頻率穩定性很高。
(2)調制外光技術。外光調制是利用某些光電、聲光或磁光特性的外調制器,完成對光載波的調制。相干光纖通信系統中對信號光源和本振光源的要求較高,它要求較高的頻率穩定度和較窄的光譜線。飛秒激光輸入頻率穩定,可調諧范圍較寬,但所占帶寬相對較小,具有超強的能量和超短的時間,完全符合作為相干光纖通信系統光源的要求。
(3)壓縮頻譜技術。在相干光通信中,光源的頻譜寬度是一個重要參數。只有保證光波的頻譜寬度窄,才能使相伴漂移而產生的相位噪聲更小,從而得到大容量、高質量的光傳輸。
飛秒激光器
1飛秒激光器的介紹
伴隨光纖通信技術的飛速發展,利用超長波長光纖實現超長距離通信,一直是我們不斷追求的重要發展方向之一。如何獲取并采用超長波長光源,這是超長波長光纖通信系統中首先需要解決的技術問題。飛秒激光就是這樣一種超長波長光源,將其應用于相干光通信的光源,具有相當大的優勢。飛秒激光是由激光發展起來的一種新型工具,其功能非常強大。飛秒脈沖短得令你無法想象,現在能夠達到4飛秒以內。1飛秒(fs),即10-15秒,這僅僅是1千萬億分之一秒,所以也稱為超短脈沖激光器。飛秒脈沖采用多級啁啾脈沖放大技術獲得的最大脈沖峰值功率,可以達到百太瓦(TW,即1012W)甚至拍瓦(PW,即1015W)量級,飛秒激光的能量強度如此之高,毫不夸張地說,它比將太陽照射到地球上的全部光聚集成繡花針尖般大小后的能量密度還高。
2飛秒激光器的工作原理
飛秒激光器的工作原理。第一,采用衍射光柵將一束飛秒激光分成兩束或更多束,通過一個共焦成像系統讓它相干。第二,將一個鍍有金屬薄膜的透明基體與一個接受基體疊放在一起。第三,利用相干的飛秒激光脈沖輻照透明基體上的金屬薄膜,激光瞬間加熱作用產生的壓力將會驅動輻照區的金屬薄膜蒸發到與它接觸的接受基體上,蒸發的金屬將迅速重新固化,沉積到接受基體上,這樣在接受基體上就會得到由相干飛秒激光脈沖傳輸的周期微結構。
3飛秒激光器的應用
飛秒激光最直接的應用就是作為超短超快光源。應用泵浦探測技術和多種時間光譜分辨技術,作為飛秒固體激光放大器的種子光源。雖說我們能夠使光脈沖寬度愈來愈窄,光脈沖能量愈來愈高,但最令人欣喜的進展還是能夠輕易得到飛秒脈沖。飛秒激光的應用研究領域大概分為兩種,一種是超快瞬態現象的應用研究,另一種是超強現象的應用研究。伴隨激光脈沖寬度的縮短和能量的增加,這兩種研究都得到了深入的發展。可以看到,飛秒脈沖激光的發展直接帶動了生物醫療、材料工程與信息科學進入超微觀超快速的研究領域,并開創了一些如納米技術、立體三維存貯等全新的研究領域,此外,它還被應用于信息的處理、傳輸和存貯方面,擁有廣闊的應用前景。
飛秒激光作為相干光通信光源的廣泛應用
篇3
1.業務承載能力
(1)OTN技術
采用基于TDM體制的復用技術,每路信號占用在時間上固定的比特位組,信道通過位置進行標識,有獨特的幀結構,可區分不同等級速率,并能在同一網絡中綜合不同的網絡傳輸協議,對實時性業務及非實時性業務都能提供相應承載,實現了從窄帶到寬帶的綜合業務傳輸。
傳輸設備可以直接提供工業標準的通信協議接口,而不需借助接入設備。
各種通信業務應用可直接接入OTN,無需接入設備,可以支持語音。圖像信號的多點廣播,采用數字圖像壓縮(M-JPEG和H.264)和圖像矩陣交換技術。
OTN設備簡單、組網靈活、集中維護方便,國內外地鐵工程中應用廣泛,其不足是設備獨家生產,售后服務對原設備廠商依賴大,兼容性差,與非OTN網絡連接能力較弱。
(2)ATM技術
ATM雖然可以承載實時性業務中的時分復用業務,但每一個節點的延時都要大于SDH傳輸制式,特別是故障時系統切換時間較SDH傳輸制式長(有時甚至以秒計),所以ATM技術一般不用于時分復用業務的承載。另外,ATM沒有低速率接口,需增加接入設備,設備價格高且協議復雜。對于視頻業務,由于其具有很高的突發度,而ATM恰恰能夠很好地支持具有突發性的可變比特率業務,并且其固有的設計已經充分考慮了業務QOS(服務質量)問題,因此可以實現承載。
然而對于非實時性業務的傳輸,ATM存在帶寬利用率較低的問題,且沒有音頻等低速接口,需設接入設備。
(3)SDH及基于SDH的多業務傳送平臺(MSTP)
SDH是最適合實時性業務中時分復用業務的承載技術,但無法解決實時性業務中視頻信號和實時性業務及非實時性業務中以太網的傳輸問題。SDH接口種類單一,僅具有PDH系列標準接口(E1/E3/STM-le)。傳輸窄帶業務(話音、數據、寬帶音頻)時,需增加接入設備(PCMD/l設備);無直接的視頻和LAN接口,需外部增加視頻CODEC和Ethernet路由器;對Ethernet業務,一般只提供ZMb/s的傳輸帶寬,存在性能瓶頸;對廣播音頻業務,僅提供3kHz的傳輸帶寬,難以滿足高保真的廣播效果;一般只提供點對點的通信信道,難以滿足大量共線式通信信道的要求。
同時SDH只能向用戶提供固定速率的信道,不能動態分配帶寬,不能進行統計復用,對總線型寬帶數據業務及圖像業務的支持困難。
MSTP克服了SDH設備中的一些不足,隨著技術不斷的發展成熟,越來越適合各種通業務的承載,但仍需增加接入設備。
(4)RPR
對于實時性時分復用業務,RPR技術雖然定義了協議,但需在實際中得到進一步驗證。
對于數據業務,RPR具備絕對的優勢,可根據用戶需求分配帶寬,支持空間復用技術和統計復用技術,在網絡正常運營的情況下,可使帶寬利用率相對SDH網絡提高3-4倍。RPR還可對數據業務進行優化,有效支持IP的突發特性。
對于有實時性要求的數據業務,RPR可以提供不同等級的服務和基于不同等級業務的環保護功能來保障數據業務的實時性,在保障實時性方面和故障倒換時間(16ms-50ms)上可與SDH技術媲美,而在帶寬利用率上比SDH傳輸數據業務大大提高。特別是它對視頻業務的承載,目前數據視頻監控市場的主流設備提供商,都將其系統構建在基于IP的MPEGZ編碼和壓縮技術,以及基于IP的視頻數據存儲、檢索和訪問控制技術上,這些系統所采用的攝像頭基本上都可以直接提供MPEGZ編碼及以太網數據端口,因此,由RPR技術來承載視頻監控系統,用戶數據能繼續保持以太網幀格式,省略復雜的映射過程,并對用戶分組進行嚴格的服務質量等級分類;并能提供嚴格的延時和抖動保障機制,視頻圖像清晰、畫面流暢,完全達到高速鐵路/公路監控圖像的要求。但業務接口同SDH、MSTP、ATM、IP一樣,必須借助于接入設備來提供低速數據接口。
2.帶寬利用率
OTN:開銷<2%,帶寬利用率較高。
ATM:開銷約為12.8%,帶寬利用率低。
SDH:開銷占3.7%,但由于其需預留保護帶寬,帶寬利用率較低。
RPR:開銷占3.7%,同時采用統計空間復用技術,使帶寬利用率大大提高。
3.環網保護能力、可靠性
OTN:采用雙環設計網絡,具有自愈保護功能,并且保護倒換時間小于50ms。
ATM:主要進行VC保護。
SDH及MSTP的網絡:具有強大的保護恢復能力,并且保護倒換時間小于50ms。
RPR:網絡具有強大的保護恢復能力,并且保護倒換時間小于50ms。
4.成熟度及發展前景
OTN:國內軌道交通領域已得到較多運用,但油田和長輸管線比較少,作為西門子的專利技術比較成熟,在專網需求方面能夠予以專屬研發和更新,發展速度較快。
ATM:技術、設備復雜,隨著IP技術的發展,IP質量保證問題的解決,對ATM技術應用帶來較大沖擊,其發展前景不好。
SDH及MSTP:SDH技術很成熟,有著廣泛的應用基礎;MSTP是在SDH基礎上發展起來的,目前還在不斷完善,功能越來越強。
RPR:目前還未得到較大規模的應用,需在實踐中進行驗證,但其技術先進,發展前景好。
二、光通信傳輸網絡在油氣田和長輸管線上的應用
通過上述對比可以看出,四種技術各有優劣,應用在油氣田和長輸管道上,應綜合考慮工程實際,合理優化,選擇適合油氣田和長輸管道傳輸技術發展方向的技術或技術組合,極大地提高效率,降低成本。
篇4
2.1擴大了單一波長傳輸的容量
當今社會僅單一波長傳輸的容量就高達40Gbit/s,并且相關部門在這個基礎上已經開始研究160Gbit/s的傳輸技術。在研究40Gbit/s以上的傳輸技術時,應該對光纖的PMD做出具體的要求。2002年,美國優先在LTU-TSG15會議中提出了將新的光纖類別引入40Gbit/s系統的倡議。并且認為在PMD傳輸中一些問題有待探討。我們堅信在不久的將來,舉世矚目的專門的40Gbit/s的光纖類型將會出現。
2.2超長距離的傳輸
在傳輸網絡的骨干中,理想的傳輸形式莫過于無中繼的傳輸。迄今為止,一部分公司正在采用的技術是色散齊理,它能夠實現:最短2000千米至最長5000千米的無電中繼類型的傳輸。另一部分公司正在不斷改進,提升完善光纖指標,應用拉曼光,放大光傳輸距離的延長。
2.3適應DWDM運用
普遍應用的是32×DWDM系統,64×和32×10Gbit/s的系統正在研發中,已經取得了不小的進展。DWDM技術得到了廣泛的應用,各研究機構必須加強光纖非線性標準的嚴格控制。最新推出的ITU-T技術很好地針對光纖制定了測試方法標準,完成了非線性屬性的標準。明確非線性的測試指標,提出有效面積的相應指標,尤其要完善光纖的非線性的特性。
3光纖通信發展現狀
3.1普通光纖發展現狀
我們最常見的光纖就是普通光纖。光通信技術的進步,系統逐步發展,單一波長信息容量和光中繼距離的加大G652光纖的性能產生了進一步提升的可能,表現在不同的區域,一種符合ITUTG654規定截止波長的單模光纖,還有符合G653規定的單模光纖,做出了發展性完善。
3.2核心網發展現狀
我國的幾大干線已經全面地采用了光纜,多模的光纖遭到合理淘汰,全面實施單模光纖。常用的有G652和G655兩種光纖。G653在我國初步使用后,今后不會繼續發展。G654也因為不能實現該種通信方式系統容量的大幅度增加,因此從來沒有使用到我國陸地光纜中。干線光纜主要在室外,多數使用分立光纖,這些光纜中的舊式結構已經停用。
3.3接入網光纜發展現狀
接入網的光纜具有分支多、距離短、分差頻繁等特點,通常通過增多光纖芯數的方法來增加網容量。由于市內管道的管道內徑一定,結合光纖的芯數增多和集裝密度的增大減輕光纜重量,縮小光纜直徑十分重要。接入網通常采用的是G652單模光纖或者是G652C低水峰的單模光纖。后者在我國只有少量投入使用。
3.4室內光纜發展現狀
室內光纜通常需要能夠滿足不同的要求,具備多種功能。比如說數據、話音以及視頻信號的傳送,還可能在遙控和傳感器中得到應用。IEC的電纜分類中,指出了室內光纜。它至少要包括兩大部分,即局內光纜與綜合布線。綜合布線的光纜一般布放在室內的用戶端,主要用途就是供用戶使用,因此必須要全面考慮到它的易損性。局用光纜主要布放在中心局以及其他各類電信機房內,布放的位置相對固定。
3.5通信光纜在電力線路內
光纖只是一種介電質,光纜卻可以是一種全介質,而且是完全無金屬的。這種全介質的光纜將會成為電力系統中最理想的線路。在電線桿的敷設中普遍應用兩種全介質光纜的兩種主要結構:一種是用于架空地線的纏繞式的結構,另一種是全介質自承式的結構。因為全介質自承式的結構可以單獨地布放,適應范圍廣,在我國當下的電力系統改造過程中得到了廣泛實施。國內已經生成許多種類達到市場要求的ADSS光纜,但是在其產品的結構和性能等方面還需要更進一步的完善。
4光纖通信的主要應用形式
在光纖通信的各種應用形式中,最普遍最常見的就是電子公文。當代社會的信息化逐漸發達,網絡用戶需求不斷上漲,無紙化辦公成為一種時尚。這就出現了電子公文。
4.1電子公文與紙質公文的共性和差別
紙質辦公是一種傳統的辦公模式,在歷經了多年的傳承之后,在為人們傳遞信息的同時也暴露出了許多的問題,類似于容易流失,耗費資源,流轉較慢等。電子公文的產生就有了很大的區別。雖然兩者都是信息流傳的載體,但是電子公文具有顯而易見的優越性。現代化信息社會必須有無紙化,在此基礎上朝著網絡化、信息化、科學化、自動化、智能化的趨勢快速發展。
4.2電子公文的必要性
傳統觀念認為電子公文要應用計算機操作,十分不便,更加依賴于直觀的紙質公文,但是紙質公文存在嚴重的資源浪費、信息遺失和字跡模糊等缺陷,所以,電子公文代替紙質公文始終是必然的趨勢。相對于紙質公文在日常工作中的收文登記,承辦傳閱過程中對手工以及腿功的依賴,以及在領導外出時,公文傳遞的不便,電子公文只需要一臺電腦和一根網線就能夠輕松地解決問題,而且保證省時省力,可復制,可粘貼,可備份,超值又有效。利用空間小,保存時間久,受外界因素影響小。
4.3電子公文技術問題
電子公文要想能夠實現無紙化的辦公條件,必須依靠人們的共同努力,制造出一套良好的、完善的、實用的管理制度,保證電子公文的高效性和安全性,避免公文的非法泄露。電子公文是信息傳播的載體,是傳遞訊息的渠道,隨著現代化辦公水平的提高,電子公文的質量也必須精益求精。所以,必須明確電子公文的幾項專業技術,抓住進步的空間。電子公文不能滿足于現有的硬件配置。在軟件設計方面存在功能上、安全性、操作中的缺陷。實際應用過程中,計算機操作人員的技術掌握和應用能力不到位。軟件的后續升級不及時,其他軟件系統的兼容性存在問題。
5光纖通信的發展與展望
就光纖通信的具體應用的詳細分析,讓我們更好地了解了光纖通信技術。光纖通信技術已經成為現代化信息時代的必要性存在。現在從關鍵點回復到光纖通信的全局考慮,光纖通信的未來發展趨勢十分可觀。可發展的趨勢涉及很多領域,下面就讓我們進入深入詳細的探討。
5.1光網絡智能化
光網絡智能化的實現是在光纖通信技術當中十分關鍵的研發方向,在光纖通信技術將近40年的發展歷程中,傳輸一直占據著主要地位,成為光通信技術的干線。伴隨著計算機技術的連續進步和發展,完美地將通信技術與計算機技術結合起來,促使網絡技術發生更高層次的發展和進步。現代光網絡在實現傳輸的同時,結合了連續控制技術、自動發現能力和更加完善實用的保護和恢復功能系統,真正實現了光網絡的智能化。
5.2全光網絡
全光網絡是光纖通信技術在發展過程中的最高層次,是光線技術發展到頂端的最理想階段,也是未來通信網絡將要發展成為的最終目標,也就是說未來的通信網絡就是屬于全光的時代。原始的全光網絡對于實現節點處的全光化雖然是可操作的,但是在各網絡節點處采用的仍然是電器件,這就會阻礙光纖通信容量的穩步提升,所以,全光網絡就是光纖通信網絡不斷發展的終極目標。
5.3光器件集成化
在光電子器件發展的過程中,追求的就是光器件集成化的真正實現。考慮到全光通信網絡實現過程中的關鍵點,器件的集成十分重要,器件的集成更是全光網絡通信技術的核心技術。將檢測器、激光器、調制器和其他類型的集成芯片集成到一個芯片中才能完成光子集成芯片的制造。這些集成是通過往不同材料的各種薄膜介質表層上的連續沉積來實現的,主要應用的材料有磷化銦和砷化銦鎵等等。這是一種十分復雜的技術,但是由于傳統互聯網接入技術有限,接入帶寬不足,以及現代互聯網多媒體的發展需求,單純地通過改良設備來擴大寬帶,提高速度的做法是很不現實的,我們必須實現光器件的集成,從而保證光纖通信的發展核心堅固扎實。
篇5
光纖通信是利用光作為信息載體、以光纖作為傳輸的通信方式。在光纖通信系統中,作為載波的光波頻率比電波的頻率高得多,而作為傳輸介質的光纖又比同軸電纜或導波管的損耗低得多,所以說光纖通信的容量要比微波通信大幾十倍。光纖是用玻璃材料構造的,它是電氣絕緣體,因而不需要擔心接地回路,光纖之間的串繞非常小;光波在光纖中傳輸,不會因為光信號泄漏而擔心傳輸的信息被人竊聽;光纖的芯很細,由多芯組成光纜的直徑也很小,所以用光纜作為傳輸信道,使傳輸系統所占空間小,解決了地下管道擁擠的問題。
光纖通信在技術功能構成上主要分為:(1)信號的發射;(2)信號的合波;(3)信號的傳輸和放大;(4)信號的分離;(5)信號的接收。
2.光纖通信技術的特點
(1)頻帶極寬,通信容量大。光纖比銅線或電纜有大得多的傳輸帶寬,光纖通信系統的于光源的調制特性、調制方式和光纖的色散特性。對于單波長光纖通信系統,由于終端設備的電子瓶頸效應而不能發揮光纖帶寬大的優勢。通常采用各種復雜技術來增加傳輸的容量,特別是現在的密集波分復用技術極大地增加了光纖的傳輸容量。目前,單波長光纖通信系統的傳輸速率一般在2.5Gbps到1OGbps。
(2)損耗低,中繼距離長。目前,商品石英光纖損耗可低于0~20dB/km,這樣的傳輸損耗比其它任何傳輸介質的損耗都低;若將來采用非石英系統極低損耗光纖,其理論分析損耗可下降的更低。這意味著通過光纖通信系統可以跨越更大的無中繼距離;對于一個長途傳輸線路,由于中繼站數目的減少,系統成本和復雜性可大大降低。
(3)抗電磁干擾能力強。光纖原材料是由石英制成的絕緣體材料,不易被腐蝕,而且絕緣性好。與之相聯系的一個重要特性是光波導對電磁干擾的免疫力,它不受自然界的雷電干擾、電離層的變化和太陽黑子活動的干擾,也不受人為釋放的電磁干擾,還可用它與高壓輸電線平行架設或與電力導體復合構成復合光纜。這一點對于強電領域(如電力傳輸線路和電氣化鐵道)的通信系統特別有利。由于能免除電磁脈沖效應,光纖傳輸系還特別適合于軍事應用。
(4)無串音干擾,保密性好。在電波傳輸的過程中,電磁波的泄漏會造成各傳輸通道的串擾,而容易被竊聽,保密性差。光波在光纖中傳輸,因為光信號被完善地限制在光波導結構中,而任何泄漏的射線都被環繞光纖的不透明包皮所吸收,即使在轉彎處,漏出的光波也十分微弱,即使光纜內光纖總數很多,相鄰信道也不會出現串音干擾,同時在光纜外面,也無法竊聽到光纖中傳輸的信息。
除以上特點之外,還有光纖徑細、重量輕、柔軟、易于鋪設;光纖的原材料資源豐富,成本低;溫度穩定性好、壽命長。由于光纖通信具有以上的獨特優點,其不僅可以應用在通信的主干線路中,還可以應用在電力通信控制系統中,進行工業監測、控制,而且在軍事領域的用途也越來越為廣泛。
3.光纖通信技術在有線電視網絡中的應用
20世紀90年代以來,我國光通信產業發展極其迅速,特別是廣播電視網、電力通信網、電信干線傳輸網等的急速擴展,促使光纖光纜用量劇增。廣電綜合信息網規模的擴大和系統復雜程度的增加,全網的管理和維護,設備的故障判定和排除就變得越來越困難。可以采用SDH+光纖或ATM+光纖組成寬帶數字傳輸系統。該傳輸網可以采用帶有保護功能的環網傳輸系統,鏈路傳輸系統或者組成各種形式的復合網絡,可以滿足各種綜合信息傳輸。對于電視節目的廣播,采用的寬帶傳輸系統可以將主站到地方站的所需數字,通道設置成廣播方式,同樣的電視節目在各地都可以下載,也可以通過網絡管理平臺控制不同的站下載不同的電視節目。
有線電視網絡在全國各地已基本形成,在有線電視網絡現有的基礎上,比較容易地實現寬帶多媒體傳輸網絡,因此在目前的情況下,不應完全廢除現有的有線電視網,而用少量的投資來完善和改造它,滿足人們的目前需要。很多地區的CATV已經是光纖傳輸,到用戶端也是同軸電纜進入千萬家。但是現在建設的CATV大多是單向傳輸,上行信號不能在現有的有線電視網中傳送。可以通過電信網PSTN中語音通道或數據通道形成上行信號的傳送,也可以通過語音接入系統來完成。將電話接到各用戶,這樣各用戶間即可以打電話,也可以利用廣電自己的綜合信息網中的寬帶傳輸系統構成廣電網中自己的上行信號的傳送,組成了雙向應用的Internet網。
現在光通信網絡的容量雖然已經很大,但還有許多應用能力在閑置,今后隨著社會經濟的不斷發展,作為經濟發展先導的信息需求也必然不斷增長,一定會超過現有網絡能力,推動通信網絡的繼續發展。因此,光纖通信技術在應用需求的推動下,一定不斷會有新的發展。
參考文獻:
[1]王磊,裴麗.光纖通信的發展現狀和未來[J].中國科技信息,2006,(4)
篇6
在光纖通信系統中,由于光纖存在損耗和色散,從而使傳輸容量和距離在很大程度上都受到了限制。光孤子通信的出現極其有效的解決了光纖色散問題。所謂光孤子通信是在光纖長距離傳輸中,用光孤子超短光脈沖做信息載波,信號的波形和速率始終保持不變,并且可以到近零誤碼率信息傳遞的通信方式。
3光纖通信技術的發展趨勢
3.1超大容量、超長距離傳輸技術
WDM雖然能極大地改善光纖傳輸系統的頻帶利用率,但是隨著通信需求的距離不斷加大,就需要一門更好的技術來支持超長距離傳輸,因此就有了DWDM(密集波分復用技術)及OTDM(光時分復用技術)和WDM(波分復用技術)相結合的產生。這種結合技術的優勢在于極大的提升光通信系統的傳輸速率和傳輸帶寬。依靠WDM(波分復用技術)和OTDM(光時分復用技術)來提高光纖通信系統的傳輸帶寬的效果是一定的,因此可以把多個光時分復用信號進行波分復用,從而提高系統的傳輸帶寬。RZ(歸零)編碼的占空比在光纖通信中對光纖的PDM(偏振模色散)和非線性適應能力很強,此外RZ編碼信號的占空比在超高速系統中很小,這對色散的要求也降低了,所以一般超大容量的通信系統都采用RZ編碼傳輸。
3.2全光網絡(AONAllOpticalNetwork)
全光網是指信號在網絡中傳輸和交換的過程中始終以光的形式存在,只在出入網絡時才進行電/光和光/電的變換。由于在傳輸的整個過程中都沒有電的處理,所以極大的提高了網絡資源的利用率,通信網干線總容量的進一步提高。全光網絡不能獨立在通信系統中存在,它必須要結合因特網、移動通信網等通信技術,因此光網絡必將向著服務多元化和資源配置的方向發展。全光網絡網絡結構十分的簡潔,組網也十分的靈活可變,可在不附加任何的交換處理設備的情況下隨意添加新的節點。全光網絡不僅能提供超大帶寬、極高處理速率和極低誤碼率,而且也具有良好的透明性、兼容性、可靠性、開放性和可擴展性。從光纖通信的發展趨勢來看,未來信息網絡的核心將是建立一個一光交換技術為主的光網絡層,消除電光瓶頸也是未來光通信發展的必然趨勢。
篇7
沅陵遠方集控計算機監控系統采用北京中水科技有限公司開發的全開放、分層分布式H9000V4.0系統由一(兩)套數據采集服務器群、兩臺操作員站、一臺工程師站、一臺培訓工作站、一臺語音報警站、一臺報表服務器、兩臺遠動工作站、一臺廠內通信工作站(用于基地內通信)和兩臺Ⅰ區核心交換機組成。集控側監控系統同樣采用雙冗余配置并與電廠側監控系統在功能上完全對等且互為備用,形成一套完整的監控系統。沅陵基地監控網通過PTN及光纖直連兩個1000Mb不同的通信通道與鳳灘廠區的監控計算機系統通信,預留1000MbSDH通道為應急冷備用通道,形成完整監控網,控制以沅陵基地的系統為主,前方的系統備用,實施遠程監視與控制。根據電監會安全[2006]34號文《電監會關于主機加固的規定》,電廠監控系統等關鍵應用系統的主服務器,以及網絡邊界處的通信網關、WEB服務器等,應該使用安全加固的操作系統,采用專用軟件強化操作系統訪問控制能力。故本期共配置了5套操作系統加固軟件以滿足系統安全防護的要求。遠方監控系統沒有采用傳統的規約打包式傳輸方式,而采取沅陵調度大樓控制終端直接與電廠側現地控制單元通訊的“直采直送”方式,將遠程控制、采集延時控制在5ms以內,滿足國家電網公司對智能化電廠的數據及時性要求。同時采用雙中心冗余配置對時系統,鳳灘主站、沅陵從站,確保系統時鐘一致性(如圖1~2)。
3系統光纖通信案例分析
遠方集控SDH建設采用NEC的U-NODE設備,建設內容如下:沅陵:沅陵基地配置1套NECU-NODEWBM設備,配置2塊L-16.2光板分別對涼水井變和鳳灘后方,1塊L-1.2光板對鳳灘前方,1塊GBEM板和1塊FEH板。鳳灘:由于鳳灘后方NECU-NODEBBM設備主框插槽已滿,無法新上2.5Gb/s光板,因此本工程在鳳灘后方NECU-NODEBBM設備上配置1個EXT16(2.5Gb/s)擴展(含2塊PSW板的更換)子框和1塊L-16.2光板,以及1塊FEH板。涼水井變:涼水井220kV變現有NECU-NODEWBM設備。
4試驗調試
調度軟交換系統試驗調試工作從2012年12月30日開始,完成了系統功能試驗與網絡可靠性試驗。經過一段時間的試運行,系統各項性能穩定。PTN設備2013年1月22日由由湖南省電力公司信息通信公司信息通信運維中心組織,使用專業網絡測試工具Smartbits600B網絡性能分析儀對PTN傳輸通道性能進行測試(詳見鳳灘電廠沅陵基地至后方機房網絡傳輸通道測試報告)。并與SDH設備的性能進行了比較,從數據上說明了PTN設備在以太網的傳輸效率高于SDH設備。整體試驗達到前期方案要求,沒有出現漏項缺項情況,試驗數據可靠真實。通過聯調試驗,檢驗了SDH、PTN通道的可靠性,二次防護網、調度數據網的穩定性,檢測了PTN及調度數據網等系統各項切換的延時及穩定性,試驗數據滿足要求,SDH、PTN、二次防護網、調度數據網已具備正式投運條件。
篇8
1.2DWDM光纖通信在鐵路通信系統中的應用
DWDM光纖通信技術是借助單模光纖寬帶與損耗低的特點,由多個波長構成載波,許可各個載波信道能同時在同一條光纖里傳輸,如此一來,在給定信息傳輸容量的情況西夏,就能降低所需光纖的總量。使用DWDM技術,單根光纖能傳輸的最大數據流量可以高達400Gb/s。DWDM技術最顯著的優點就是其協議與傳輸速度是沒有關聯的,以DWDM技術為基礎的網絡可以使用IP協議、以太網協議、ATM等進行數據傳輸,每秒處理數據流量在100Mb~2.5Gb之間。也就是說,以DWDM技術為基礎的網絡能在同一個激光信道上以各種傳輸速度傳輸各種類型的數據流量。當前,在國內鐵路通信網里DWDM技術得到了廣泛應用,其中滬杭-浙贛鐵路干線就是國內第一條使用DWDM光纖傳輸系統的鐵路。此外,京九、武廣等鐵路的DWDM光纖傳輸系統也在建設與使用中。就拿京九鐵路來說,京九鐵路線使用的是具有開放性的DWDM系統和設備,能兼容各種工作波長以及廠商的SDH設備。波道數量為16,波道速率基礎為每秒2.5Gb,借助京九線20芯光纜里的2芯G.652單模光纖,使用單纖單向傳輸的方式,也就是說相同波長在兩個方向上都能多次使用,光接口滿足ITU-TG.692協議的標準。
篇9
2.1將朝著超高速系統發展隨著現代科技的飛速發展,光纖通信技術已經擁有了更快的傳輸速度,為了最大限度的滿足社會發展的需求,光纖通信技術必然會朝著超高速系統的方向發展。推動光纖通信技術傳輸速度的提升能夠給我們帶來下面兩個優勢:一方面是光纖通信技術朝著超高速系統發展會極大的提高新業務的傳輸容量;另一方面是隨著光纖通信技術傳輸速度的提升能夠確保多媒體和寬帶等不同技術功能的更好實現。另外,全光傳輸距離的增加也能夠在一定程度上增加光纖傳輸容量。所以,超高速系統應該是未來光纖通信技術的主要發展方向。
2.2將朝著更大的容量發展光纖通信技術的發展要求其擁有更大的容量,現階段,光纖通信應用的帶寬只有百分之一,剩余的99%的帶寬無法充分的利用起來。所以為了避免光纖帶寬的浪費,我們必須要盡快的開發光纖通信容量。隨著現代科學技術的發展,光纖通信技術具備的傳輸容量越來越大,在未來的幾年之內將其容量擴充到目前的幾十甚至幾百倍也不是沒有可能性的。
篇10
1.3環形網絡光纖有兩個不同的物理路,是接入光節點將諸多的光節點進行有效的串聯,且首位銜接,呈現環形的網絡構造。有源光纖的接入設施跟同步的光纖設施都能夠組成環形的網絡構造形式,這樣的構造可以增多光纖的接入網管理力度,且上下的支路較為靈活,組網便捷。環形網絡的容量比較低,且絕大多數的業務會匯聚在一個節點處,網絡的保護方法通常使用二線單向通道進行倒換方法。在其他的有源光纖接入設施呈現環形網絡時,它的保護功能通常就使用1+1的線路保護。
2機場有線通信網對光接入網的選擇
用戶密度比較大的大樓以及樓群、距離電話交換局很遠的又相對集中的用戶群體可以使用有源雙星網絡。利用全數字的傳送方法提供電話通信的信道、數據信道、非話業務等,讓原有的傳送量為9600kbit/s及以下的速率有效地提升至32Mbit/s等以下的各類標準效率,且增強了傳送的信道,還滿足了機場各個部分的用戶通信業務各類要求,改善了通信的最終質量。如圖4所示為機場到發報臺光接入點網絡結構簡圖。在業務量的要求非常大時,對通信的安全性要求很高的部門有轉報室、調度熱線、雷達站點、票務專線、氣象中心等,均選擇環形網。新建且相對較小的用戶群體,如一般的政府部門,可選擇無源雙星網。
光纖接入網在總體的通信網絡中有著重要的地位,且對民航的有線通信進展是不容忽視的,應盡快結合實際的狀況,由點到面地進行有效的試點工作。在接入網絡上,光纖的接入方法不會在短時間內即刻替代電纜接入方法。這也是當前的經濟等綜合業務要求不同方面的因素。如圖5所示為機場的光接入網絡虛擬圖。
篇11
光纖通信是利用光作為信息載體、以光纖作為傳輸的通信方式。可以把光纖通信看成是以光導纖維為傳輸媒介的“有線”光通信。光纖由內芯和包層組成,內芯一般為幾十微米或幾微米,比一根頭發絲還細;外面層稱為包層,包層的作用就是保護光纖。實際上光纖通信系統使用的不是單根的光纖,而是許多光纖聚集在一起的組成的光纜。由于玻璃材料是制作光纖的主要材料,它是電氣絕緣體,因而不需要擔心接地回路;光波在光纖中傳輸,不會發生信息傳播中的信息泄露現象;光纖很細,占用的體積小,這就解決了實施的空間問題。
二、光纖通信技術的特點
2.1頻帶極寬,通信容量大。光纖的傳輸帶寬比銅線或電纜大得多。對于單波長光纖通信系統,由于終端設備的限制往往發揮不出帶寬大的優勢。因此需要技術來增加傳輸的容量,密集波分復用技術就能解決這個問題。
2.2損耗低,中繼距離長。目前,商品石英光纖和其它傳輸介質相比的損耗是最低的;如果將來使用非石英極低損耗傳輸介質,理論上傳輸的損耗還可以降到更低的水平。這就表明通過光纖通信系統可以減少系統的施工成本,帶來更好的經濟效益。
2.3抗電磁干擾能力強。石英有很強的抗腐蝕性,而且絕緣性好。而且它還有一個重要的特性就是抗電磁干擾的能力很強,它不受外部環境的影響,也不受人為架設的電纜等干擾。這一點對于在強電領域的通訊應用特別有用,而且在軍事上也大有用處。
2.4無串音干擾,保密性好。在電波傳輸的過程中,電磁波的傳播容易泄露,保密性差。而光波在光纖中傳播,不會發生串擾的現象,保密性強。除以上特點之外,還有光纖徑細、重量輕、柔軟、易于鋪設;光纖的原材料資源豐富,成本低;溫度穩定性好、壽命長。正是因為光纖的這些優點,光纖的應用范圍越來越廣。
三、不斷發展的光纖通信技術
3.1SDH系統光通信從一開始就是為傳送基于電路交換的信息的,所以客戶信號一般是TDM的連續碼流,如PDH、SDH等。伴隨著科技的進步,特別是計算機網絡技術的發展,傳輸數據也越來越大。分組信號與連續碼流的特點完全不同,它具有不確定性,因此傳送這種信號,是光通信技術需要解決的難題。而且兩種傳送設備也是有很大區別的。
3.2不斷增加的信道容量光通信系統能從PDH發展到SDH,從155Mb/s發展到lOGb/s,近來,4OGB/s已實現商品化。專家們在研究更大容量的,如160Gb/s(單波道)系統已經試驗成功,目前還在為其制定相應的標準。此外,科學家還在研究系統容量更大的通訊技術。
3.3光纖傳輸距離從宏觀上說,光纖的傳輸距離是越遠越好,因此研究光纖的研究人員們,一直在這方面努力。在光纖放大器投入使用后,不斷有對光纖傳輸距離的突破,為增大無再生中繼距離創造了條件。
3.4向城域網發展光傳輸目前正從骨干網向城域網發展,光傳輸逐漸靠近業務節點。而人們通常認為光傳輸作為一種傳輸信息的手段還不適應城域網。作為業務節點,既接近用戶,又能保證信息的安全傳輸,而用戶還希望光傳輸能帶來更多的便利服務。
3.5互聯網發展需求與下一代全光網絡發展趨勢近年來,互聯網業發展迅速,IP業務也隨之火爆。研究表明,隨著IP業的迅速發展,通信業將面臨“洗牌”,并孕育著新技術的出現。隨著軟件控制的進一步開發和發展,現代的光通信正逐步向智能化發展,它能靈活的讓營運者自由的管理光傳輸。而且還會有更多的相關應用應運而生,為人們的使用帶來更多的方便。
綜上所述,以高速光傳輸技術、寬帶光接入技術、節點光交換技術、智能光聯網技術為核心,并面向IP互聯網應用的光波技術是目前光纖傳輸的研究熱點,而在以后,科學家還會繼續對這一領域的研究和開發。從未來的應用來看,光網絡將向著服務多元化和資源配置的方向發展,為了滿足客戶的需求,光纖通信的發展不僅要突破距離的限制,更要向智能化邁進。
四、光纖鏈路的現場測試
4.1現場測試的目的對光纖安裝現場測試是光纖鏈路安裝的必須措施,是保證電纜支持網絡協議的重要方式。它的目的在于檢測光纖連接的質量是否符合標準,并且減少故障因素。
4.2現場測試標準目前光纖鏈路現場測試標準分為兩大類:光纖系統標準和應用系統標準。①光纖系統標準:光纖系統標準是獨立于應用的光纖鏈路現場測試標準。對于不同的光纖系統,它的標準也不同。目前大多數的光纖鏈路現場檢測應用的就是這個標準。②光纖應用系統標準:光纖應用系統標準是基于安裝光纖的特定應用的光纖鏈路現場測試標準。這種測試的標準是固定的,不會因為光纖系統的不同而改變。
4.3光纖鏈路現場測試光纖通信應用的是光傳輸,它不會受到磁場等外界因素的干擾,所以對它的測試不同于對普通的銅線電纜的測試。在光纖的測試中,雖然光纖的種類很多,但它們的測試參數都是基本一致的。在光纖鏈路現場測試中,主要是對光纖的光學特性和傳輸特性進行測試。光纖的光學特性和傳輸特性對光纖通信系統對光纖的傳輸質量有重大的影響。但由于光纖的特性不受安裝的影響,因此在安裝時不需測試,而是由生產商在生產時進行測試。
4.4現場測試工具①光源:目前的光源主要有LED(發光二極管)光源和激光光源兩種。②光功率計:光功率計是測量光纖上傳送的信號強度的設備,用于測量絕對光功率或通過一段光纖的光功率相對損耗。在光纖系統中,測量光功率是最基本的。光功率計的原理非常像電子學中的萬用表,只不過萬用表測量的是電子,而光功率計測量的是光。通過測量發射端機或光網絡的絕對功率,一臺光功率計就能夠評價光端設備的性能。用光功率計與穩定光源組合使用,組成光損失測試器,則能夠測量連接損耗、檢驗連續性,并幫助評估光纖鏈路傳輸質量。③光時域反射計:OTDR根據光的后向散射原理制作,利用光在光纖中傳播時產生的后向散射光來獲取衰減的信息,可用于測量光纖衰減、接頭損耗、光纖故障點定位以及了解光纖沿長度的損耗分布情況等。從某種意義上來說,光時域反射計(OTDR)的作用類似于在電纜測試中使用的時域反射計(TDR),只不過TDR測量的是由阻抗引起的信號反射,而OTDR測量的則是由光子的反向散射引起的信號反射。反向散射是對所有光纖都有影響的一種現象,是由于光子在光纖中發生反射所引起的。:
雖然目前光通信的容量已經非常大,但仍有大量應用能力閑置,伴隨著社會經濟和科學技術的進一步發展,對信息的需求也會隨之增加,并會超過現在的網絡承載能力,因此我們必須進一步努力研究更加先進的光傳輸手段。因此,在經濟社會發展的推動下,光通信一定會有更加長久的發展。
參考文獻:
[1]王磊,裴麗.光纖通信的發展現狀和未來[J].中國科技信息.2006.(4).
篇12
近幾十年來,通信技術發展迅速,隨著通信技術要求越來越高,光纖通信具有帶寬高、出錯率小、傳輸快速等特點,使其逐漸走進人們視野,成為應用最廣泛的通信技術。目前,我國主干網基本上也都是光纖通信,但仍存在一些不足。為了更好、更安全的通信,我們需了解光纖通信技術的發展史。光纖通信技術起源于國外,20世紀五六十年代,開始研制出光纖,但那個時候光纖的損耗高達每千米358分貝。后又經過英國科學家幾年的研究,研究出理論損耗可以減少到每千米19分貝的新型光纖。接著日本也開始研究光纖,但還是沒能達到最低損耗。最后,康寧公司采用粉末法研制出了每千米損耗20分貝的石英光纖。最近,摻鍺石英光纖損耗降到了每千米0.2分貝,已經達到了石英光纖理論上提出的最低損耗極限。
3 光纖通信技術
3.1 光纖通信技術概述
光纖采用光波通信,光纖是一種由玻璃或塑料制成的纖維,利用全反射原理來傳輸信息的材料。光纖的發射裝置的一端采用發光二極管或者一束激光將光脈沖傳輸至光纖,另一端接收裝置采用光敏元件檢測脈沖信號。光纖又分單模光纖和多模光纖,單模光纖的直徑在8um-10um之間,多模光纖的直徑有50um和62.5um兩種。兩者相比,單模光纖的傳輸距離更長。
3.2 光纖通信技術的特點
3.2.1 傳輸帶寬高、容量大
光纖與雙絞線和同軸電纜相比,其傳輸帶寬高及信息容量大。帶寬高和光纖的直徑沒有直接關系,即:不會由于光纖的直徑大而帶寬高 。隨著光纖通信系統各個終端設備技術的改進,與密集波分復用技術結合應用,使得光纖的通信帶寬高及信息容量大。
3.2.2 損耗低,傳輸距離長
在光纖、雙絞線和同軸電纜三種傳輸介質中,光纖的傳輸損耗最低。由于損耗低,那么傳輸的距離相對而言也就長。減少了通信系統中的中繼器使用量,從而降低了布置整個系統的成本,直接給運營商帶來更好的經濟利益。
3.2.3 抗干擾性好,保密性強
光纖以石英為材料制成,石英有較好的絕緣性、抗腐蝕性,從而抗電磁波干擾性強,不會形成接地回路。一般電磁波傳輸容易泄露信息,從而保密性差,而光纖基本上不會發生串擾現象,保密性強。光纖在通信中,受環境影響極小,可見光纖適用于強電領域。光纖還有質量小,輕便,布網方便,成本低,原材料石英豐富,耐高溫等特點。
4 現代光纖通信技術的現狀
21世紀,光纖通信技術快速發展起來。光纖通信技術主要是引入了光纖接入網技術和波分復用技術,從而大大的提高了通信的質量和安全性。
4.1 光纖接入網技術
光纖接入網技術是光纖通信技術一個全新的領域,來實現信息快速和高速傳輸,滿足了人們生活的需求。光纖接入網技術由寬帶的主干傳輸網絡和用戶接入各部分組成。光纖接入網技術的關鍵環節或者最后一個環節就是用戶接入技術。要想所有用戶實現信息的高速傳輸,滿足用戶的帶寬需求,用戶接入技術主要是對接入網的用戶終端而言,通過該技術為用戶提供方便,方便為用戶提高不受限制的寬帶,來滿足用戶需求。光纖接入網技術除了為網絡通信主干網負責數據傳輸外,還負責網絡中所有用戶接入網絡的用戶接入技術。目前,根據光纖寬帶的接入位置,來進一步區分光纖,主要有FTTB、FTTC、FTTCab、FTTH等類型。首先,介紹光纖到戶技術,簡稱FTTH。光纖到戶技術主要在光纖寬帶接入方面來提供全光的接入方式。光纖到戶技術利用光纖帶寬的特點,先收集寬帶信息,接下來整理處理寬帶信息,最后傳輸寬帶信息。通過這樣的操作來給用戶提供所需要的帶寬,來滿足用戶上網需求和信息傳輸需求。可見,光纖接入網的最后一個環節是光纖到戶技術。根據光纖到戶技術不同的應用來看主要分為光纖有源接入技術和光纖無源接入技術兩種形式。光纖有源接入技術實際上就是點到點的P2P技術,其主要為用戶可以實現用戶PC到服務器終端的直接連接,P2P可以實現高帶寬接入;光纖無源接入技術則為一點到多點的XPON技術。傳統網絡通信方式一般都具有通信瓶頸的問題,光纖接入網技術能夠很好地解決這個問題,能夠滿足主干網絡或者核心網絡的傳輸通信信息量。為了更好地滿足用戶和網絡的傳輸需求,通常光纖接入網技術會結合SDH. ATM等多種技術混合使用,產生GPON、APON和EPON三種技術。一般而言,在電路交換性的業務通常使用GPON技術;只在信息傳輸過程中起到點對多點的連接作用的是EPON;相比較而言APON技術相對復雜,其用的比較少。
4.2 波分復用技術
波分復用技術是使用波分復用器,來大大降低光纖的損耗,從而來提高帶寬,傳輸更大的信息量。波分復用技術可以使用在不同的光波頻段和不同的波長,將傳輸的低損耗窗口分為很多個單通信管道。波分復用技術同時也在發送端裝備波分復用器,利用它把不同的信號一起傳送到光纖中,再利用光纖進行信息的傳輸。同樣也在接收端安裝波分復用器,其作用是把光纖中輸出的信號再按不同的頻率和波長進行分開處理。在接收端分離這些不同信號過程中,在同一個信道里的光波信號是獨立的,從而實現不同光波信號在同一個信道里傳輸,即光復用技術傳輸。目前,波分復用技術在飛速發展,使用范圍不斷擴大。波分復用技術其中的粗波分復用技術,其信道間隔為20nm,采用波分復用技術中的集體發送和劃分,從而實現在1260nm-1620nm范圍內波長的波分復用。采用此技術能夠大大降低光器件的成本,從而提高運營商的經濟利益,同時也在很大程度上提高了信道容量。因此,波分復用技術得到了很多運營商的好評并得到了很大程度的應用。
4.3 光放大技術
在光纖接入網技術和波分復用技術兩個技術成熟的同時,為了更好地通信,進一步引入光放大技術,光放大技術主要是采用光放大器對光信號進行放大加強。光放大技術很大程度上促進了光復用技術、光孤子通信以及全光網絡的快速發展。在放大傳信號之前,應該進行OEO變換,即:光電變換及電光變換。
篇13
隨著高科技信息技術的不斷發展,在3G向著4G轉變的過程中,無線通信系統正在逐漸的變得更加完善,尤其是衛星通信技術的不斷發展,成為通信產業未來發展的重要方向。在實踐過程中,無線通信技術在廣播電視衛星通信中的應用,必須注重衛星通信的獨特性、廣泛性和高科技性等,才能在充分開展各種地面業務的同時,推動衛星通信技術改革和創新,最終實現衛星通信技術和無線通信業務的融合。現展中,4G通信技術的產生,使各國之間的交流和溝通變得更加頻繁,也使無線通信技術發生了歷史性的轉變,并給廣播電視衛星通信帶來非常深遠的影響。一般情況下,衛星通信技術主要是作為應急通信技術在使用,可以在自然災害發生時發揮著重要作用,因此,對無線通信系統的發展也有著非常重要的影響,在與地面業務傳輸網絡相結合應用的過程中,使各種信息傳輸的速度得到有效提高,并保證了傳輸信息的高質量、高速度、高效率和高覆蓋,從而顯示出衛星通信技術與地面業務傳輸網絡之間有著相互補充和影響的特點。
由此可見,衛星通信系統與地面業務傳輸系統在空中接口中的完美融合,才能使網絡通信技術獲得不斷發展,并促進無線通信系統不斷發展。因此,想要更快的進入4G通信時代,就必須高度重視通信技術改革和創新,不斷加大投入力度,才能真正實現無線通信系統的現代化發展。在無線通信技術不斷發展的過程中,衛星空間段通信的某些部分與地面段通信某些部分的不是完善,在一定程度上構建成了一個完整的、具有復雜性質的混合體結構。現代高科技技術中,用于上行鏈路的SC―FDMAR技術和用于下行鏈路的基于OFDM技術的接入方式等,都是高速數據傳輸系統中效果較好的新型多址方式,在LTE的接入方式中也得到了有效運用,從而對寬帶多媒體衛星通信系統的空中接口技術有著更高的要求。
因此,在通信技術的不斷發展和端口到端口對接系統不斷演化的大環境下,想要不斷提高衛星通信的市場競爭力,就必須快速適應現代快速變化的通信環境,注重端口到端口的衛星通信基礎設施的建設,提高其技術水平,才能真正發揮衛星通信系統的綜合效用,促進我國廣播電視產業長遠發展。目前,衛星通信技術的發展方向主要有如下幾個方面:一是,對不同區域的資源進行靈活配置;二是,注重直連性,以保證不同區域之間的配置可以哼哼的進行星型互聯;三是,在移動和固定兩種情況下,確保終端用戶可以擁有更好的寬帶容量;四是,在滿足地面業務多樣化需求的同時,不斷增加衛星通信系統的容量;五是,在端口對端口的相關設施中,采用混合通信業務模式,以不斷提高數據觀測和定位能力;六是,注重衛星通信的中繼功能,以確保空間通信網絡的數據鏈路高速性、網絡實時性和永久性。根據通信技術的發展情況可知,目前其正處于融合下一代移動網絡的趨勢中,在提高山區和通信不良好地區的通信能力上發揮著重要作用。與此同時,衛星通信網絡和地面業務系統的相關聯結,成為地面傳輸業務的重要組成部分,從而使傳統通信技術和衛星通信產業的相互融合,成為未來通信技術發展的核心和重要方向。
綜上所述,無線通信技術給廣播電視衛星通信帶來了非常深遠的影響,在保證地面傳輸系統不斷完善的同時,提高了通信信息的傳輸質量、有效性和速度,在推動廣播電視產業長遠發展上發揮著重要作用。
作者:劉昶閱 單位:國家廣電總局無線電臺管理局七八三臺