日韩偷拍一区二区,国产香蕉久久精品综合网,亚洲激情五月婷婷,欧美日韩国产不卡

在線客服
CUDA范例精解:通用GPU編程(影印版)圖書
人氣:52

CUDA范例精解:通用GPU編程(影印版)

CUDA是設(shè)計用于幫助開發(fā)并行程序的計算體系結(jié)構(gòu)。通過與廣泛的軟件平臺相結(jié)合,cuda體系結(jié)構(gòu)使程序員可以充分利用圖形處理單元(gpu)的強大能力構(gòu)建高性能的應(yīng)用程序。當然,gpu已經(jīng)在很長時間內(nèi)用于實現(xiàn)復(fù)雜的圖形...

內(nèi)容簡介

CUDA是設(shè)計用于幫助開發(fā)并行程序的計算體系結(jié)構(gòu)。通過與廣泛的軟件平臺相結(jié)合,cuda體系結(jié)構(gòu)使程序員可以充分利用圖形處理單元(gpu)的強大能力構(gòu)建高性能的應(yīng)用程序。當然,gpu已經(jīng)在很長時間內(nèi)用于實現(xiàn)復(fù)雜的圖形和游戲應(yīng)用程序。現(xiàn)在,cuda將這種具有價值的資源帶給在其他領(lǐng)域內(nèi)從事應(yīng)用程序開發(fā)的程序員,包括科學(xué)、工程和財務(wù)領(lǐng)域。這些程序員不需要了解圖形編程的相關(guān)知識,而只要能夠采用適當擴展的c語言版本進行編程即可。

本書由cuda軟件平臺團隊中的兩位博學(xué)成員編寫而成,他們向程序員展示了如何使用這種新的技術(shù),并且通過大量可以運行的示例介紹了cuda開發(fā)的每個領(lǐng)域。在簡要介紹cuda平臺和體系結(jié)構(gòu)以及快速指導(dǎo)cudac之后,本書詳細介紹了與每個關(guān)鍵的cuda功能相關(guān)的技術(shù),以及如何權(quán)衡使用這些功能。通過閱讀本書,您將掌握使用每個cudac擴展的時機以及編寫性能極為優(yōu)越的cuda軟件的方式。

編輯推薦

CUDA范例精解:通用GPU編程(影印版)》由清華大學(xué)出版社出版。

作者簡介

山德爾(Jason Sanders)是NVIDIA公司CUDA平臺團隊中的博學(xué)軟件工程師,他協(xié)助開發(fā)了早期版本的CUDA系統(tǒng)軟件,并且?guī)椭贫俗鳛楫悩?gòu)計算的行業(yè)標準的OpenCL 1.0規(guī)范。Jason也在ATI Technologies、Apple和Novell擔(dān)任相關(guān)職務(wù)。 康洛特(Edward Kandrot)是NVIDIA公司CU

目錄

foreword

preface

acknowledgments

about the authors

1 why cuda ? why now?

1.1 chapter objectives

1.2 the age of parau. el. processing

1.3 the rise of gpu computing

1.4 cuda

1.5 applications of cuda

1.6 chapter review

2 getting started

3.1 chapter objectives

2.2 deve!.opment environment

2.3 chapter review

3 introduction to cuda c

3.1 chapter objectives

3.2 a first program

3.3 querying devices

3.4 using device properties

3.5 chapter review

4 parallel programming in cuda c

4.1 chapter objectives

4.2 cuda para[tel programming

4.3 chapter review

5 thread cooperation

5.1 chapter objectives

5.2 splitting parallel blocks

5.3 shared memory and synchronization

5.4 chapter review

6 constant memory and events

6.1 chapter objectives

6.2 constant memory

6.3 measuring performance with events

6.4 chapter review

7 texture memory

7.1 chapter objectives

7.2 texture memory overview

7.3 simulating heat transfer

7.4 chapter review

8 graphics interoperability

8.1 chapter objectives

8.2 graphics interoperation

8.3 gpu ripple with graphics interoperability

8.4 heat transfer with graphics interop

8.5 directx interoperability

8.6 chapter' review

9 atomics

9.1 chapter objectives

9.2 compute capability

9.3 atomic operations overview

9.4computing histograms

9.5 chapter review

10 streams

10.1 chapter objectives

10.2 page-locked host memory

10.3 cuda streams

10.4 using a single cuda stream

10.5 using multipte cuda streams

10.6 gpu work scheduling

10.7 using multiple cuda streams effectively

10.8 chapter review

11 cuda c on multiple gpus

11.1 chapter objectives

11.2 zero-copy host memory

11.3 using multiple gpus

11.4 portable pinned memory

11.5 chapter review

12 the final countdown

12.1 chapter objectives

12.2 cuda tools

12.3 written resources

12.4 code resources

12.5 chapter review

a advanced atomics

a.1 dot product revisited

a.2 impl. ementing a hash tabte

a.3 appendix review

index

在線預(yù)覽

In recent years, however, manufacturers have been forced to l,ook for al,terna-tives to this traditional, source of increased computational, power. Because ofvarious fundamental- l,imitations in the fabrication of integrated circuits, it is nol-onger feasibl.e to rel.y on upward-spiral,ing processor cl,ock speeds as a meansfor extracting additional power from existing architectures. Because of power andheat restrictions as wel,l, as a rapidl,y approaching physical- l,imit to transistor size,researchers and manufacturers have begun to l,ook el.sewhere.Outside the woHd of consumer computing, supercomputers have for decadesextracted massive performance gains in simil,ar ways. The performance of aprocessor used in a supercomputer has cl,imbed astronomical,l,y, simil.ar to theimprovements in the personal- computer CPU. However, in addition to dramaticimprovements in the performance of a singl,e processor, supercomputer manu-facturers have al,so extracted massive leaps in performance by steadily increasingthe number of processors. It is not uncommon for the fastest supercomputers tohave tens or hundreds of thousands of processor cores working in tandem.In the search for additional, processing power for personat computers, theimprovement in supercomputers raises a very good question: Rather than sol,el,yl,ooking to increase the performance of a single processing core, why not putmore than one in a personal- computer? In this way, personal- computers coul,dcontinue to improve in performance without the need for continuing increases inprocessor clock speed.

媒體評論

"對于處理基于圖形加速器的計算系統(tǒng)的人員來說,本書是必不可少的讀物。" ——Jack Dongarra博士(田納西大學(xué)特聘教授和橡樹嶺國家實驗室杰出研究員)作序推薦

網(wǎng)友評論(不代表本站觀點)

來自的JF**的評論:

簡單易懂的書 建議GPU入門的人購買

2011-01-04 09:04:36
來自wendyan**的評論:

cuda的經(jīng)典書籍,值得購買~

2011-11-30 13:20:16
來自life4li**的評論:

實用的教材

2011-12-12 09:42:59
來自小笨笨l**的評論:

男朋友說還不錯

2012-02-21 22:29:58
來自土豆絲Y**的評論:

商品很好,隔了這么久才來好評,不錯不錯

2013-12-03 18:58:33
來自無昵稱**的評論:

我英文一般 看起來有點吃力 外國人寫書比中國人強那是一定的

2011-01-17 15:57:28
來自等待鮮**的評論:

還可以,就是簡單了點,不過老外能把問題講清楚,還是比較推薦。。。。。。

2011-03-07 17:55:17
來自無昵稱**的評論:

介紹cuda為數(shù)不多的書,正在看,目前還可以

2010-12-21 21:54:27

免責(zé)聲明

更多出版社
主站蜘蛛池模板: 新竹市| 敖汉旗| 茌平县| 西藏| 上饶市| 巴东县| 剑川县| 雷波县| 香格里拉县| 英吉沙县| 治多县| 仲巴县| 霞浦县| 瑞安市| 英吉沙县| 乌兰察布市| 保德县| 赤水市| 普洱| 垦利县| 双牌县| 龙海市| 平阴县| 安徽省| 云霄县| 益阳市| 凤凰县| 永清县| 建昌县| 信宜市| 阜平县| 蓬安县| 莎车县| 七台河市| 广汉市| 浠水县| 恩平市| 崇州市| 华蓥市| 婺源县| 出国|