引論:我們為您整理了13篇cdma技術論文范文,供您借鑒以豐富您的創作。它們是您寫作時的寶貴資源,期望它們能夠激發您的創作靈感,讓您的文章更具深度。
篇1
Abstract:Thisissuemainlysetsforththecharacterandstrongpowerofthe3thgenerationmobiletelecommunicationtechnology-cdma.Telecommunicationaltermshavetranseredfromnarrowservices,suchastelephone,sendingorreceivingmessages,tomultimediumofbroadband.PDSNisentrygateway,whitchlinkingwirelessnetandpackagenettogether.PDSNalsoservingforusers`enteringpackagedatenet.AAAservercanprovideusers`identificationbyprobingpre-registedlogininformation,thendecidewhetherpermittingmobileusersusingsomenetworkresourse,atthesametimeitcalculatingfee,audittin,allottingofcostoranalysisingoftrend.CDMAprovidingpowerfulguaranteefordevelopmentofmobilecommunication.
Keywords:CDMA;AAAserver;Internet;Intranet
1引言
CDMA(CodeDivisionMultipleAccess碼分多址)是近年來被應用于商業的一種數字接口技術。他擁有頻率利用率高、手機功耗低等優點。CDMA手機是指基于CDMA網絡的移動通信終端。目前,19家企業被批準有資格生產CDMA終端產品。
CDMA手機除了能夠提供GSM手機的通話功能和信息服務外,還具有高速無線數據傳輸和多媒體功能。能提供的服務主要有:
(1)基本增值服務,如呼叫轉移、信息提示等。
(2)語音郵件服務,如郵件、傳真、新聞等語音信息。
(3)短信息服務,如天氣、交通、證券、廣告等。
(4)無線智能網服務,如虛擬網絡、個人號碼識別等。
(5)無線互聯網服務,如網絡瀏覽、電子商務、電子郵箱、網絡游戲等。
2CDMA所具有的優點
與GSM手機相比,CDMA手機具有以下優點:
(1)CDMA手機發射功率小(2mw)。
(2)CDMA手機采用先進的切換技術——軟切換技術(即切換是先接續好后再中斷),使得CDMA手機的通話可與固定電話媲美,而且不會有GSM手機的掉線現象。
(3)使用CDMA網絡,運營商的投資相對減少,這就為CDMA手機資費的下調預留了空間。
(4)因采用以拓頻通信為基礎的一種調制和多址通信方式,其容量比模擬技術高10倍,超過GSM網絡約4倍。
(5)基于寬帶技術的CDMA使得移動通信中視頻應用成為可能,從而使手機從只能打電話和發送短信息等狹窄的服務中走向寬帶多媒體應用。
在第三代移動通信的無線接口國際提案中,WCDMA和CDMA2000都是極為重要的技術。這兩種寬帶CDMA方案,除了碼片速率、同步方式、導頻方式等有所不同外,其他如功率、軟切換等基本技術并無大的區別。
CDMAOne是基于IS-95標準的各種CDMA產品的總稱,即所有基于CDMAOne技術的產品,其核心技術均以IS-95作為標準。CDMA2000是美國向ITU提出的第三代移動通信空中接口標準的建議,是IS-95標準向第三代演進的技術體制方案,這是一種寬帶CDMA技術。CDMA2000室內最高數據速率為2Mb/s以上,步行環境時為384kb/s,車載環境時為144kb/s以上。
CDMA2000-1X原意是指CDMA2000的第一階段(速率高于IS-95,低于2Mb/s),可支持308kb/s的數據傳輸,網絡部分引入分組交換,可支持移動IP業務。
CDMA2000-1XEV是在CDMA2000-1X基礎上進一步提高速率的增強體制,采用高速率數據(HDR)技術,能在1.25MHz(同CDMA2000-1X帶寬)內提供2M/s以上的數據業務,是CDMA2000-1X的邊緣技術。3GPP已開始制訂CDMA2000-1XEV的技術標準,其中用高通公司技術的稱為HDR。
與CDMAOne相比,CDMA2000有下列技術特點:多種信道帶寬,前向鏈路上支持多載波和直擴兩種方式;反向鏈路僅支持直擴方式;可以更加有效地使用無線資源;可實現系統平滑過渡;核心網協議可使用IS-41,GSM-MAP以及IP骨干網標準;前向發送分集;快速前向功率控制;使用Turbo碼;輔助導頻信道;靈活幀長;反向鏈路相干解調;可選擇較長的交織器。CDMA2000-1X采用擴頻速率為SR1,即指前向信道和反向信道均用碼片速率1.2288Mb/s的單載波直接序列擴頻方式。因此他可以方便地與IS-95(A/B)后向兼容,實現平滑過渡。運營商可在某些需求高速數據業務而導致容量不夠的蜂窩上,用相同載波部署CDMA2000-1X系統,從而減少了用戶和運營商的投資。由于CDMA2000-1X采用了反向相干解調、快速前向功控、發送分集、Turbo編碼等新技術,其容量比IS-95大為提高。在相同條件下,對普通話音業務而言,容量大致為IS-95系統的兩倍。
3CDMA關鍵技術所在
CDMA2000-1X關鍵技術包括以下幾個方面。
(1)前向快速功率控制技術CDMA2000采用快速功率控制方法。即移動臺測量收到業務信道的Eb/Nt,并與門限值比較,根據比較結果,向基站發出調整基站發射功率的指令,功率控制速率可以達到800b/s。由于使用快速功率控制,可以達到減少基站發射功率、減少總干擾電平,從而降低移動臺信噪比要求,最終可以增大系統容量。
(2)前向快速尋呼信道技術此技術有2個用途。一是尋呼或睡眠狀態的選擇。因基站使用快速尋呼信道向移動臺發出指令,決定移動臺是處于監聽尋呼信道還是處于低功耗的睡眠狀態,這樣移動臺便不必長時間連續監聽前向尋呼信道,可減少移動臺激活時間和節省移動臺功耗。二是配置改變。通過前向快速尋呼信道,基地臺向移動臺發出最近幾分鐘內的系統參數消息,使移動臺根據此新消息作相應設置處理。
(3)前向鏈路發射分集技術CDMA2000-1X采用直接擴頻發射分集技術,有2種方式:一種是正交發射分集方式,方法是先分離數據流再用不同的正交Walsh碼對2個數據流進行擴頻,并通過2個發射天線發射。另一種是空時擴展分集方式,使用空間兩根分離天線發射已交織的數據,使用相同原始Walsh碼信道。使用前向鏈路發射分集技術可以減少發射功率,抗瑞利衰落,增大系統容量。
(4)反向相干解調基站利用反向導頻信道發出擴頻信號捕獲移動臺的發射信號,再用梳狀(Rake)接收機實現相干解調,與IS-95采用非相干解調相比,提高了反向鏈路性能,降低了移動臺發射功率,提高了系統容量。
(5)連續的反向空中接口波形在反向鏈路中,數據采用連續導頻,使信道上數據波形連續,此措施可減少外界電磁干擾,改善搜索性能,支持前向功率快速控制以及反向功率控制連續監控。
(6)Turbo碼使用Turbo碼具有優異的糾錯性能,適于高速率對譯碼時延要求不高的數據傳輸業務,并可降低對發射功率的要求、增加系統容量,在CDMA2000-1X中Turbo碼僅用于前向補充信道和反向補充信道。Turbo編碼器由2個RSC編碼器(卷積碼的一種)、交織器和刪除器組成。每個RSC編碼器有兩路校驗位輸出,2個輸出經刪除復用后形成Turbo碼。Turbo譯碼器由2個軟輸入、軟輸出的譯碼器、交織器、去交織器構成,經對輸入信號交替譯碼、軟輸出多輪譯碼、過零判決后得到譯碼輸出。7)靈活的幀長與IS-95不同,CDMA2000-1X支持5ms,10ms,20ms,40ms,80ms和160ms多種幀長,不同類型信道分別支持不同幀長。前向基本信道、前向專用控制信道、反向基本信道、反向專用控制信道采用5ms或20ms幀,前向補充信道、反向補充信道采用20ms,40ms或80ms幀,話音信道采用20ms幀。較短幀可以減少時延,但解調性能較低;較長幀可降低對發射功率的要求。
(8)增強的媒體接入控制功能媒體接入控制子層控制多種業務接入物理層,保證多媒體業務的實現。他實現話音、分組數據和電路數據業務同時處理,提供發送、復用和Qos控制,提供接入程序。與IS-95相比,他可以滿足更高寬帶和更多業務的要求。CDMA1X網絡的關鍵設備,分組數據服務節點(PDSN)、鑒權、授權、計費服務器(AAA)、本地(HA)是CDMA1X系統支持分組數據業務的關鍵設備,為此對他們進行專門的介紹。PDSN是連接無線網絡和分組數據網的接入網關,為移動Internet/Intranet用戶提供分組數據接入服務。除了使點到點協議(PPP)封裝的IP包能在無線網絡和IP網絡間正確傳輸外,PDSN還與其他各種接入服務商的IP分組網絡連接,從而為終端用戶提供諸如互聯網接入、電子商務、WAP應用等多種業務。PDSN同時還完成AAA服務器所需的合并的分組會話計費數據和無線會話計費數據搜集功能,并且支持移動IP的外部(FA)和用戶設備的85認證功能,同時還能提供移動IP業務,滿足終端用戶豐富多彩的移動互聯網業務需求。
AAA服務器完成的功能有:用戶注冊信息的認證,即通過驗證一些預先登記的信息來提供用戶身份認證;數據業務的授權,即決定是否授權移動用戶訪問特定的網絡資源;計費信息的處理,即搜集資源使用信息,用于進行計費、審計、成本分配或趨勢分析等。此外,他還須實現與PDSN,HA及其他AAA服務器的交互功能,向移動用戶提供分組數據業務。AAA服務器具有下列特征:使用RADIUS協議,支持大規模的外部和漫游業務,RADIUS能向外部的RADIUS服務器提供可靠的AAA功能;通過目錄支持功能和程序化的配置接口,完成配置、計費和其他業務管理部件的集成,從而降低運營成本和加快業務推出速度;通過支持集中化的IP地址分配和對跨多地理區域接入設備會話的限制,高效使用管理資源。
只有使用“移動IP”時才需要HA。作為一個獨立的網絡單元,HA用來完成對移動IP和移動IP用戶的移動性管理功能。HA通過移動終端登記來定位移動用戶,同時把分組數據轉發到用戶當前所登記的FA(位于PDSN內)。HA同時支持動態的IP地址分配和反向隧道。HA具有冗余備份功能,可由一個HA替代另一個HA。這樣,新的HA可以用原有IP地址和轉換地址維護關聯表,保證移動關聯表處于同步狀態。此外,這種方式還能保證解決方案的可用性和可擴展性。
近一段時間以來,聯通開始大舉推廣CDMA1X網絡,并明確宣稱將把重心放在無線互聯的移動數據業務上。而目前,無線局域網成熟的標準可達到11Mb/s的速率,新的標準最高達54Mb/s的速率,這對移動用戶具有非常大的吸引力。
早在2003年4月的博鰲亞洲論壇首屆年會上,海南聯通在當地建了3個CDMA1X的基站,并向前來采訪年會的記者分發了近300張的無線上網卡,CDMA1X+WLAN方案的數據業務更是引起了廣泛關注。按照設想,海南聯通甚至要為沿海漁民以及鉆井平臺上的工作人員提供包括天氣預報等在內的移動數據服務。
WLAN這種早已被電信網通普遍采納的無線接入技術,一經與CDMA1X融合,就顯示出其獨特的魅力。一般說來,雖然WLAN可以提供高速的數據業務,但WLAN卻缺少對用戶進行鑒權與計費的成熟機制,而且無線局域網的覆蓋范圍較小,一般都在熱點地區,用戶使用時受到地點的限制。而CDMA1X網絡經過了幾十年的研究與實驗,不僅有成熟鑒權與計費機制,并且具有覆蓋廣的特點。CDMA1X網絡可以利用WLAN高速數據傳輸的特點以彌補自己數據傳輸速率受限的不足,而無線局域網不僅充分利用了CDMA1X網絡完善的鑒權與計費機制,而且可結合CDMA1X網絡覆蓋廣的特點,進行多接入切換功能。這樣就可實現WLAN用戶與CDMA1X用戶統一的管理。
為了獲得無線局域網提供的數據業務,終端必須處于無線局域網的信號覆蓋范圍內,即首先要連接到AP。當終端發起數據業務的呼叫時,先在APGW和PDSN之間建立RP連接,然后到PDSN進行分組網絡的注冊,才可進行數據業務,其具體連接過程如下:
(1)終端在WLAN網絡系統中檢測WLAN的信號,并連接到AP。
(2)當終端有數據業務的需求時,發起連接請求,在AP/APGW收到連接消息后,APGW向PDSN發送Au注冊請求消息。若注冊請求消息有效,則PDSN通過返回帶接收指示的Au注冊應答消息接收該連接,PDSN和APGW均產生關于A10連接的綁定記錄。
(3)終端和PDSN建立PPP的連接,在建立PPP連接的過程中,如果是SimpleIP用戶,PDSN會分配給終端一個IP地址(對MobileIp用戶,還需進行MIP的注冊)。
(4)PPP連接建立成功,終端可以通過GRE幀在A10連接上發送或接收數據。
(5)在Au注冊生存期超過前,APGW發送Au注冊請求消息以更新A10連接的注冊。Au注冊請求消息也用于向PDSN傳送與計費相關的信息以及其他信息,這些信息在系統定義的觸發點上傳送。
(6)對于有效的注冊請求,PDSN返回帶接受指示和生存期值的A11注冊應答消息。PDSN和APGW均更新A10連接的綁定記錄。PDSN在返回注冊應答消息之前保存與計費相關的信息(如果收到的話)用于進一步處理。
(7)如果用戶或PDSN終止數據業務,則PDSN將終止和用戶PPP連接,并拆除與APGW的RP連接。
WLAN網絡,其中無線接入點(AccessPoint,AP)是無線終端接入固定電信網的連接設備,為用戶提供無線接入功能,可提供話音和數據的接入服務。AP完成簡單的對無線用戶的管理和對無線信道的動態分配,并完成802.11與802.3協議的轉換,經過AP轉換后的數據包是以太網包。
接入點網關(AccessPointGateway,APGW)是將AP轉換出的以太網數據包封裝成IP包,并發送到PDSN的設備。一般PDSN設備放置的位置與無線網絡側設備AP、APGW離得比較遠,要實現PDSN接入網關的作用經常需要將AP轉換的二層數據包穿越三層網絡以到達PDSN。因此,APGW功能實體就是為了完成此功能的轉換設備。
參考文獻
[1]TeroOjanpera.寬帶CDMA:第三代移動通信技術[M].北京:人民郵電出版社,2001.
[2]楊大成.CDMA2000技術[M].北京:北京郵電大學出版社,2001.
篇2
碼分多址(code division multiple acce-ss,CDMA)系統作為一個自干擾系統,它存在的多址干擾(Multiple Access Inter-ference,MAI)是限制CDMA系統容量和性能的主要因素。在抗MAI方面,近年的研究主要提出了多用戶檢測、擴頻碼設計和智能天線技術[1]。其中多用戶檢測和智能天線技術在對抗MAI方面效果較突出[2]。然而現有的多用戶檢測只在消除小區內干擾方面取得了較好的效果,而小區間的干擾問題沒有解決,智能天線技術很好的解決了這一問題。因此,本文主要探討基于智能天線與多用戶檢測技術的聯合抗干擾技術。
2.聯合抗干擾模型
智能天線分為圓陣和線陣兩大類。圓陣與線陣相比,能提供俯仰角的估計,不僅能在水平面內全向掃描,也能產生最大值指向陣面法線方向的單波束方向圖進行全向波束賦形,直接對準用戶的接收端,還能通過自動調整各個陣元的加權因子,來控制其方向圖。故論文以圓陣天線作為接收端的接收天線,以消除小區間干擾。
圓陣天線的陣因子為:
(1)
其中,An為激勵電流的幅值,在此為一定值,所以討論陣因子時它不作考慮。
是第n個單元的角位置,an為激勵電流的相位,為了方便下面的討論,這里我們假設an=0。
則由式(1)得:
(2)
(3)
式中:
,
天線的陣因子為:,,wi為各天線單元加權值。
陣列天線實質上是一個空域濾波器,但對小區內存在的干擾并無明顯改善。因此,論文同時引入能有效消除小區內干擾的多用戶檢測技術。
為了與圓陣天線合理匹配,減小系統復雜度并減小背景噪聲,我們選擇了多用戶檢測中的線性變換方式的最小均方誤差檢測(MMSE)。
其基本思想是使第k個用戶發送的信號與估計值的均誤方差值最小。為了使接收端信號的判決比特與發送端傳輸比特bk之間的均方誤差最小,現定義第k個用戶的線性變換函數wk,滿足:
(4)
令,K*K階的矩陣表示K個用戶之間的線性變換矩陣,則MMSE準則下的線性檢測問題轉換為:
(5)
要求矩陣W以滿足上式,則令:
可以解得最小均誤方差準則下的線性變換矩陣:
(6)
因此,MMSE線性檢測器后的判決輸出為:
(7)
3.仿真
利用Matlab進行仿真。聯合抗干擾模型分為圓環陣列天線與MMSE檢測兩個部分。首先,在不考慮系統中所有用戶的地理位置分布情況下,選擇采用圓陣天線作為接收天線和不采用兩種設置,設載波波長為,陣元間距d為載波波長的二分之一,即。圓環陣列天線的陣元數設為8,方位角為(-90o,90o),仰角為(0o,90o)。兩種設置在天線接收信號后都采用MMSE最小均方誤差法對輸出信號進行判決。結果如圖1所示。
由圖1可知,只有MMSE檢測的CDMA系統,信噪比從0dB達到8dB的這一過程中,誤碼率性能有所改善,但不明顯。而引合抗干擾的CDMA系統,誤碼率性能已經大大下降,達到一個數量級以上。
圖1 聯合抗干擾引入前后CDMA系統誤碼率
和信噪比關系圖
4.結論
論文論述了基于圓陣天線與MMSE檢測的聯合抗干擾技術。提出了使用八陣元圓環陣列天線作為接收天線,以MMSE檢測作為檢測算法的聯合抗干擾模型。實驗結果表明,引合抗干擾后,系統的誤碼率性能明顯改善,系統容量從而得到了提升。
參考文獻
[1]Guerci J.R.,Driscoll T.,Hannigan R.,etc..Next Generation Affordable Smart Antennas[J].Microwave Journal,2014,57(1):24-40.
篇3
1.引言
在CDMA系統中,由于多個用戶的隨機接入,使用的擴頻碼集一般不完全正交,非零互相關系數會引起各用戶間的多址干擾(MAI),在異步傳輸信道以及多徑傳播環境中多址干擾將更為嚴重。隨著同時接入系統用戶數的增加,多址干擾的功率也在增加,致使誤碼性能下降,系統容量受限。
多址干擾的抑制,可以通過選擇相關性能好的擴頻碼,結合功率控制、糾錯編碼等進行。但功率控制的方法并沒有從接收信號中真正去除多址干擾,只能暫時緩解這種矛盾;另一方面,由于信號在移動通信信道中呈現瑞利衰落,功率控制系統無法補償由快衰落引起的信號功率變化,特別是當移動臺速度很快時,功率控制技術會失效。而多用戶檢測是將造成多址干擾的所有用戶信號信息均看作有用信號信息,對單個期望信號解調,來降低多址干擾和遠近效應的影響,也降低了系統對功率控制控制精度的要求,可以有效地利用上行鏈路頻譜資源,進而提高了通信系統的容量。論文格式。
但是,多用戶檢測也存在一些局限性,需要使用訓練序列。而訓練序列的不斷發送會造成頻譜資源的大量浪費,因而人們轉去研究不需要訓練序列的盲自適應檢測。盲自適應多用戶檢測可以不需要訓練序列,在僅知道期望用戶地址PN碼及其定時信息條件下自適應跟蹤信道中用戶地址PN碼的變化,更有效地抵消小區內和小區間的多址干擾,很方便地應用在上行和下行鏈路。論文格式。
目前已有多種盲多用戶檢測方案被提出。在類型上,這些算法大致可分為基于子空間的,基于統計的,基于恒模的,以及直接型的,此外還有基于高階累積量的算法、基于最大似然比的算法、基于卡爾曼濾波的算法以及基于神經網絡的算法等等。由于結構相對簡單,且可以自適應實現,本文關注了盲自適應多用戶檢測算法。
以下將簡單介紹幾種常用的盲自適應多戶檢測算法。
2.系統模型
為了方便,我們只考慮一個具有K個用戶的同步CD MA系統,信道為A WGN信道,令比特持續時間為Tb,碼片持續時間為Tc ,N =Tb/Tc為擴頻增益,K為用戶數。接收信號經過采樣后可以表示成矩陣形式:
(1)
其中rT=[r1 … rN]是一個比特時間內接收到的信號向量,S=[s1 …sk] 為用戶的歸一化擴頻碼矩陣,sk是具有單位能量的第k個用戶的擴頻碼,A=diag(A1,…,AK)為接收信號的幅度矩陣,bT =[b1 …bk]為用戶的信息向量,bk取值為{-1,1},n 是E{ zzT}= 2I的高斯白噪聲。假設用戶1為期望用戶,那么線性接收器的輸出為
(2)
其中CT =[C1... CN]是延遲線的權系數。
3.幾種盲自適應檢測算法
3.1最小輸出能量檢測算法(MOE)
最小輸出能量檢測算法(MOE)的基本原理是在保持期望用戶能量不變的情況下,使總的輸出能量最小。所以,可以將求解加權向量的問題轉化為如下最優化問題:
(3)
式(3)中 R=E(rrT),其最優解為:
(4)
MOE的解與MMSE的解w= R-1s1相比,只相差一個常數,對性能無影響。但是直接計算最優解需要計算矩陣逆運算,計算量大,為O(N3),一般都是通過自適應的方法求得w。采用標準隨機梯度算法,具體迭代為:
(5)
其優點是計算量小,為O(N),缺點是收斂速度慢,不能保證收斂,而且在擴頻碼不匹配的情況下性能較差。
3.2恒模算法(CMA)
CMA算法是一種被應用于信道均衡的算法,消除信道引起的ISI。CMA的代價函數可以描述為:
(6)
在Godard算法中e定義為:
(7)
這里可以取一個正數。
我們采用標準隨機梯度算法,根據以上各式可以直接得出:
(8)
其中y( n-1)是濾波器n-1時刻的輸出,y(n-1) =wT(n-1)r。
恒模算法利用發送信號的權幅度統計特性調整系數,使輸出信號的幅度保持恒定。恒模算法的缺點是可能收斂到干擾信號上,而不是期望檢測的信號。
3.3基于MMSE準則的盲自適應多用戶檢測算法
基于MMSE準則的多用戶檢測器,應滿足使系統輸出的均方誤差(MSE)最小:
(9)
滿足該式的最優解為w0=R-1·p1,其中p1= E{b1·r}。采用最優權矢量最陡梯度法可以表示為:
(10)
假設接收信號滿足以下條件:①用戶發送的信息符號滿足E { bi}=0, E{ bi2}=1;②不同用戶之間的信號不相關,即E { bibj }=0, ij;③用戶信號與噪聲不相關即E { b;n}=0。實際系統中上述假設條件都較容易滿足,此時有
(11)
此時可以將(10)簡化為
(12)
其中,y( n-1)是濾波器n-1時刻的輸出,y(n-1) =rT(n-1)w(n-1),自相關矩陣
R=r(n)rT(n)。
該算法與LMS算法類似,因而具有LMS算法收斂速度慢的缺點?;谠撍惴ǖ亩嘤脩艚邮諜C的復雜度與傳統單用戶接收機相同,但其抗遠近效應的能力則明顯增強,其性能要優于MOE盲多用戶檢測器。
4.仿真實驗
4.1對基于CMA的多用戶檢測算法的性能進行了仿真。
假設用戶數為6,其中用戶1為期望用戶,且信噪比SNR=20dB用戶1的信號功率為1,即A12=1,其他用戶的信號其中前4個干擾用戶的功率相等,且Ai2/A12=10dB, i=2, 3, 4 5;第5個干擾用戶的干擾功率為A62/ A12=20dB,權矢量初始化為w( 0) =s1,圖1中給出了不同常數值e下的算法的性能比較結果。論文格式。
由圖(1)可知,e值不同,則CMA算法的性能也不一樣,e=1時算法的性能優于e=0.1時的情況。
圖1不同值時CMA算法的性能比較
4.2對本文提到的盲算法進行仿真比較
我們采用31位長的Gold碼作為擴頻序列,干擾用戶數為4,信號功率分別為SNR=10dB, Ai2/A12=30dB,i=2, 3, 4 5,計算可得SIR=9.98dB,實驗中我們用時間平均代替數學期望。
圖2盲算法收斂性能比較
首先設e= A12,,步長=1e-5,圖(2)給出了CMA算法、MOE算法、基于MMSE準則的盲自適應多用戶檢測算法的收斂過程。我們可以看到三種算法都收斂,其中CMA算法收斂速度最快,穩態性最好;基于MMSE準則的盲自適應多用戶檢測算法收斂速度跟穩態性能都次之;MOE算法的收斂速度最慢,穩態性能最差。
5.結論
CDMA系統具有容量大、低功率、軟切換、抗干擾強等一系列優點。但是,在CDMA系統也存在多址干擾,遠近效應等一系列問題,而多用戶檢測是CDMA系統中關鍵的抗干擾技術,能進一步提高系統容量,改善系統性能。盲檢測由于不需要干擾用戶的信息而得到廣泛的關注。
本文重點研究了CMA算法、MOE算法、基于MMSE準則的盲自適應多用戶檢測算法,并且通過MATLAB仿真證明了CMA算法更為有效。
參考文獻:
[1] XiaodongWang and H.Vincent Poor,'Blind Multiuser Detection: A Subspace Approach',IEEE Transactions onInformation Theory,Vol.44,No.2,March 1998.
[2] Gilhousen K SOn the capacity of a cellular CDMA system [J].IEEE
Transom VehicularTechnology,1991,40(2):303-312.
[3] Duel-Hallen A,Holtzman J,ZvonarZ. Multiuser detection for CDMA
system[J].IEEETrans on Personal Communications 1995, 2(2):46-58.
[4] HonigM, VerduS Blind adaptive multiuser detection [J].IEEE Trans
on InflammationTheory,1995,41(4):944-960.
[5] W .Lee,R .L .Pickholtz,Constant modulus algorithm forblind multiuser detection,IEEE 4th international symposium on Spread Spectrum Techniques and
ApplicationsProceedings,1996. Pp262-266.
[6]M .L .Honig,Orthogonally Anchored BlindInterference Suppression using the Sato Cost Criterion,Proceedings.,1995 IEEE InternationalSymposium on Information Theory .Pp31 4.
[7] 黎海濤,徐繼麟.多用戶檢測算法及其在IMT-2000中的應用.
無線通信技術.2001年第2期.pp. 1-6.
[8] 王慶揚,張青,韋崗.CDMA移動通信系統中的多用戶檢測技術.
移動通信.2000年第2期.pp. 41-45.
[9] 張賢達著.現代信號處理,清華大學出版社,2003. pp 245-256
篇4
DCT-Domain Image Watermarking Algorithm Based On CDMA
WANG Sheng-lei1, YANG Shi-ping1,2
(1.School of Computer Science and Information, Guizhou University, Guiyang 550025, China;2.Mingde College, Guizhou University, Guiyang 550004, China)
Abstract: Putting forward a new image watermarking algorithm which is robust many attacks,this paper applies Arnold places disorderly technique and CDMA spread spectrum technique, equilibrium Gold code is selected as spread spectrum sequence, make use ofWaston sense of vision model certains imbed strength,the imbed position is certained by the adaptting algorithm, a binary image is embedded to some DCT coefficients; taking advantage of correlation property of Gold code,watermark is extracted quickly on the precondition on which host image exists. The analysis of the algorithm and carry out process are given , the attack of Matlab experiments expressed the usefulness of algorithm. Compared with the former watermark algorithm,the safety of watermarking is greatly improved, and it is robust to standard JPEG compression, noising, filtering and cropping attacks.
Key words: digital watermarking; arnold places disorderly technique; waston sense of vision model; gold sequence; code division multiple acces(CDMA); discrete cosine transform(DCT)
數字水印技術是信息隱藏技術的一個分支,其基本思想是在數字媒體中嵌入版權保護信息,以防止對宿主媒體信息進行篡改和未經授權的拷貝和分發[1-2]。從本質上講,數字水印處理可以看作一種通信過程[3],即在滿足不可見性的前提下在水印的嵌入者與接收者之間傳遞一條信息。因此許多數字通信的理論和方法都可以應用到數字水印系統中[4]。
CDMA無線通信系統具有抗干擾性強、保密性好、截獲率低等優點,因此把CDMA技術應用到數字水印系統中是一種安全有效的方法。Ruanaidh[5]等于1998年首先提出采用DS-CDMA技術實現CDMA擴頻水印,首先將分組后的水印信息以字符序列的形式擴頻到m序列上,然后進行CDMA擴頻編碼,最后對原始載體圖像進行128×128分塊DCT變換,將編碼以后的水印信息嵌入到DCT系數上。但由于受到m序列地址個數的限制,作者只在DCT域上嵌入了19個字符,嵌入容量較小且安全性低。
由于數字圖像的JPEG壓縮標準建立在DCT變換的基礎上,所以基于JPEG壓縮標準模型的水印嵌入算法可以更好地抵抗JPEG壓縮處理,本文的水印算法便基于DCT域。本文針對文獻[5]中嵌入容量和安全性受限的不足并結合DCT域嵌入水印的優點,提出了一種采用CDMA技術在圖像DCT域的中低頻分量嵌入水印信息的改進算法。
1 算法
算法分為水印生成、水印嵌入和水印提取三個步驟。
1.1 水印的生成
為增強水印的安全性和抗攻擊能力,原始水印在被嵌入之前需經過Arnold置亂和CDMA擴頻兩個步驟,其生成框圖如圖1所示。
1)原始二值水印生成
本文所使用的水印圖像為40×40的gzu.bmp,為增強水印的抗剪切能力,先利用Arnold置亂算法對原始水印圖像進行最佳置亂(置亂次數為3),置亂后的水印圖像見圖4。然后將原始水印圖像信息轉換成二進制流,為使其能被9整除在二進制碼流后加上2位變為m,長度為N(N=1602)即:
m={mi | mi={0,1},0≤i≤1601}
將m序列以9比特為一組(作為一個字符),共生成178個字符,其產生的字符串可表示為:
s={si | 0≤si≤511,0≤i≤177}
2)生成Gold序列集
采用Gold序列作為擴頻序列。通過對兩組m序列優選對移項相加得到Gold序列集。選用的兩組m序列的生成多項式為1021和1131(八進制)。一共生成了29+1=513個長度為29-1=511的Gold序列集:
pi={pij | pij∈{1,-1},0≤j≤510,0≤i≤512}
3)CDMA編碼
為每一個字符si從Gold序列集中找到下標為si的偽隨機序列:
ri=psi,0≤i≤177
最后把所有的選出的偽隨機序列串聯起來就可構成最終的擴頻序列:
1.2 水印嵌入
水印嵌入分為利用自適應位置算法確定嵌入位置、利用自適應強度算法確定嵌入強度和DCT域嵌入水印三個步驟。
1)位置自適應算法
本論文為實現嵌入位置的自適應性,提出了以下位置自適應算法:分塊DCT變換中低頻系數的首位置M1是隨著塊的均值不同而改變的,對于各8×8塊,其計算方法為:先計算該快64個像素和,然后取余16,得到余數加6,即
該算法的安全性和魯棒性比較高,但是水印提取時需要原始水印的參與,即不可實現盲提取。
本算法采用的載體水印圖像為一608×608的Lena.bmp灰度圖像。根據每一個圖像塊的平均亮度大小,利用上式確定第i(1≤i≤5776)塊DCT中低頻系數的起始位置Mi,所有的起始位置組合起來便形成了起始位置序列{P(k),1≤k≤5776}。
2)強度自適應算法
本論文利用Waston視覺模型對不同的塊進行分類,從而可以實現對水印嵌入強度進行自適應調節,在確保水印不可見的同時有效地增強水印的強度。
本文根據Watson模型,綜合考慮頻率掩蔽、亮度掩蔽和對比度掩蔽3種效應,得出DCT頻率分量的最佳嵌入強度序列{Tc(k,i,j),1≤k≤5776,1≤i,j≤8},其中Tc(k,i,j)表示第k塊第i行第j列的頻率分量最佳嵌入強度。
3)DCT域嵌入算法
本為算法是對圖I進行分塊DCT操作的,首先對原始圖像I分成K個不重疊的8×8子塊,即:
其中,M和N分別為原始圖像的長和寬;然后分塊進行DCT變換,即:
把每一塊DCT變換系數按“之“字形進行排序,將其轉化為一維描述(,0≤u≤64),將每一塊的嵌入強度系數三維矩陣(Tc(k,i,j),1≤k≤5776,0≤i,j
嵌入完成后進行反“之”字形排列,再進行IDCT變換:
所有子快都進行上述操作,就能得到嵌入水印后的圖像。水印嵌入框圖如圖2所示。
1.3 水印的提取
首先根據原始載體圖像利用位置與強度確定算法確定每一塊圖像的嵌入強度和嵌入位置,然后將原始圖像和水印化圖像分別進行分塊(8×8)DCT變換,分別對各塊”之”字排列,按照嵌入位置和嵌入強度取其差值,提取出置亂后水印信息的擴頻序列:
利用密鑰生成正交Gold序列集:
按每組長度為511把生成的擴頻水印序列w'進行分組:
把擴頻序列的一個分組r'i與正交Gold序列集中的每一個Gold序列分別做相關運算:
取其中互相關系數最大的那個Gold序列的下標記為si,將生成的所有下標串聯起來即可生成一個字符串:
把生成的字符串序列轉化為二進制,則可得提取到的水印序列:
把水印序列的最后2位去掉,再轉化為40×40的矩陣即得到置亂后的水印圖像的數據矩陣,最后利用圖像置亂算法(置亂次數為27)即可得到提取的水印圖像。水印提取框圖如圖3所示。
1.4 試驗結果
仿真實驗中,原始圖像為320×320的Lena灰度測試圖像,二值水印圖像為gzu.bmp。圖4給出原始圖像、水印圖像和水印化的載體圖像以及未受攻擊提取的水印圖像。由圖像可以看出,單純從視覺很難判斷水印化圖像與原始圖像的區別,本文算法的未受攻擊測試的水印化載體圖像與原始圖像的PSNR=36.3646,因此,不可見性良好,且從視覺上也可判斷其具有良好的不可見性。
主要實驗內容包括:JPEG壓縮攻擊,壓縮率最低到15%;不同程度的剪切攻擊;分別加入高斯噪聲、椒鹽噪聲和乘積噪聲,即噪聲攻擊,中值濾波攻擊,圖像直方圖化,圖像變亮或變暗,增加或降低對比度等攻擊。
(a)原始cdma_lena.bmp圖像 (b)原始水印圖像
(c)置亂后的水印圖像 (d)水印化cdma_lena,bmp圖像
(e)未受攻擊提取的水印圖像
圖4原始圖像
1.5 試驗結果分析
從實驗給出的測試圖像和測試數據可以看出,本文算法對基本的圖像處理具有很強的魯棒性,從實驗數據看出,處理后的圖像與水印化圖像的峰值信噪比有明顯的降低,但是提取出的水印質量還是較好,尤其是對直方圖均勻化、亮度和對比度的變化以及乘積噪聲等攻擊具有較強的抗干擾性。由于本文在嵌入水印之前把水印進行了置亂,所以使本論文對剪切處理具有較強的魯棒性,對于橫切處理,雖然提取的水印不是很清晰,但足以證明水印的存在性;零星剪切處理后,已經把人類感興趣的部分切掉,由于剪切面積不是很大,所以,還能提起出水印,用視覺可以判斷出水印的存在;對于中間縱切和中間剪切的圖像處理,從攻擊圖像可以看出,人類感興趣的重要部分基本完全切掉,只剩下背景部分,這樣的圖像已經沒有應用價值,因此是否能提取出水印已經不是那么重要了,但是,根據本文算法,仍然提取了水印圖像,只不過與原始水印
圖像相比,PSNR值較小,但用肉眼也能勉強分辨出水印圖像的內容。實驗證明無論從所給出的圖像質量評價指標來看,還是用視覺判斷,都成功的實現了水印的提取。與文獻[5]相比其魯棒性有顯著提高,特別是針對JPEG壓縮和剪切攻擊;同時由于本文利用到了自適應算法,使水印系統安全性與文獻[5]相比有所提高。
本文算法也有不足之處,就是對圖像的旋轉測試不魯棒,因為嵌入位置是固定的,待測圖像旋轉一定角度后,所有的圖像數據都移位了,在檢測時應用本文算法找不到所嵌入的起始位置,導致不能正確提取水印。但是利用Hough變換法進行直線提取其邊緣,然后矯正其圖像的旋轉角度,矯正之后就可以提取水印了。
2 總結
本文針對二值(圖像)水印,提出了一種在水印結構設計方面使用Gold碼的擴頻水印方法。為提高水印系統的魯棒性,對原始水印圖像在嵌入前進行了Arnold置亂處理;為增強水印系統的安全性,水印嵌入時使用了自適應嵌入,在得不到原始載體圖像的情況下絕對得不到任何水印信息。與使用m序列或正交序列對作為擴頻序列的方法相比,本文所提方法的優點在于,利用了Gold碼地址數多、抗干擾力強的特點,使得水印系統在抵抗各種噪聲、濾波和壓縮等攻擊方面具有更好的魯棒性。
當然,對于水印信息的檢測和恢復,本文所提方法需要原始載體圖像參與,這可能會給實際應用帶來不便,但可以通過進一步改進算法來實現盲提取。另外,本文提出的方案仍有其他需要研究之處,比如水印結構設計方面的擴頻碼長度、原始水印圖像在嵌入前的置亂次數、擴頻碼分組策略等。
參考文獻:
[1] 黃繼武,譚鐵牛.圖像隱形水印綜述[J].自動化學報,2000,26(5):645-655.
[2] Huang Jiwu,Shi Yun Q.An adaptive image watermarking scheme based on visu-al masking[J].IEEE Electronics Letters,1998,34(8):748-750.
篇5
近幾年,有學者提出了采用CDMA技術進行防碰撞的方法,其性能有明顯改善。文獻[6]提出在標簽識別過程中,使用碼分多址技術,實現一個時隙可以同時傳輸多個標簽。文獻[7]提出了一種基于碼分多址思想的時隙ALOHA算法,來解決射頻識別中的防碰撞問題,此算法的系統穩定范圍要大于時隙ALOHA系統,并且當選用的擴頻碼組階數為N時,此算法的最大吞吐量可達原時隙ALOHA的N倍。上述2個文獻所提到的算法,當標簽數量很多時,數據碰撞的概率明顯增加,使系統的吞吐量急劇下降,影響了系統的整體性能?;谝陨显?,本論文提出了1種改進的基于CDMA技術的防碰撞算法,能夠適應大量標簽的識別應用,減少了識別碰撞的發生,使系統吞吐量得到明顯改善。
1基于CDMA技術的新型防碰撞算法
n×1-1Nn-1(2)由于傳統的基于ALOHA的防碰撞算法中一個時隙最多只能正確識別一個標簽的信息,所以當標簽數目過大時,系統的吞吐率,即正確識別標簽數目所占的百分比將會大幅度的降低,所以對于過量的標簽,本算法將會采取對所有標簽進行分組識別,當標簽需要分成2組時(系統識別幀最大時隙數N為256):nN×1-1Nn-1=n2N×1-1Nn2-1 (3)用上述公式可知n=354,所以當標簽數量大于354時,系統將會對標簽分組識別。
本文提出的新型算法如下:依據分組幀時隙ALOHA算法,通過此算法的分組規則,完成識別的所有標簽的分組。分組幀時隙ALOHA算法的分組規則如下:當標簽數量≤354時,無論幀長選擇8個時隙還是256個時隙,標簽都不分組,按照一個大組來進行識別;當標簽數量>354時,幀長選擇256個時隙比較適合讀寫器的識別;當標簽數量在355707時,標簽分為2組;當標簽數量在708~1 416時,標簽分成4組更適合信息的傳輸識別。當標簽數量更多時,按照這個規律分成合適的組數再進行識別,詳細過程如圖1所示。標簽分組工作完成后,在每個分組中分別采用碼分多址技術,利用其技術的保密性、抗干擾性和多址通信能力,對標簽中的數據進行擴頻處理并傳輸。然后讀寫器端利用碼組的自相關特性對不同標簽所發的數據進行解調,從而達到防碰撞的目的,進而完成對全部標簽的識別,也實現了同一時隙可以傳輸多個信息的情況。本論文中提到的新型防碰撞算法需要預先在待識別的標簽中植入擴頻性良好的正交碼組,以防止接收端沒有辦法正確解擴接收,本文選用Walsh序列。該算法可以有效減少圖1算法執行過程示意圖標簽識別過程中的碰撞次數,從而減少了識別時間并且降低了功耗。本論文將分組幀時隙ALOHA算法和碼分多址技術相結合,實現在每個分組內可以有多個標簽同時進行擴頻傳輸,并且在接收端采用并行接收技術進行多個標簽的同時接收。本發明在識別標簽過程中,每個組內均為一個獨立的識別過程,在分組幀長不改變的前提下,提高了標簽數量龐大時的系統性能。有效地減小標簽之間的碰撞概率,縮短讀寫器操作時間,提高吞吐率, 很適合應用于具有較大數量標簽的RFID系統中。
2仿真結果
本論文提出了采用碼分多址技術的新型防碰撞算法,并仿真了固定時隙數下ALOHA算法的系統吞吐率和本文所提出的算法改進后的系統吞吐量。
RFID系統中時隙ALOHA算法的幀長取值從16個時隙到256個時隙變化,根據公式2,系統吞吐率如圖2所示。其中,系統仿真設定的信息幀長F即時隙數設定按2的冪次方遞增,即F取值從16個時隙變化到256個時隙,橫坐標為標簽數N從1變化到500,縱坐標為吞吐率。當幀長設定為256個時隙,標簽數量少于256個時,系統吞吐量隨著標簽數量的增加而增加,直到標簽數量達到256時系統的吞吐量達到最大值。隨著標簽數量的逐漸增多,系統的吞吐量又呈現下降趨勢。從圖2可以得出2點結論:一、當標簽個數接近信息幀長時,系統的吞吐率比較高;二、隨著幀長取值的增加,系統對標簽的識別性能有明顯改善。
本論文提出的基于碼分多址技術的新型防碰撞算法選用Walsh序列碼,其在對標簽的ID號進行擴頻處理后,即可實現在同一時刻有2個以上的標簽同時進入讀寫器的識別區域,它們同時發送各自的ID號后,讀寫器在接收到這些在空間疊加后的信號時也能完整地分離出不同標簽的ID號,突破了時隙ALOHA算法在同一時刻不能有2個以上標簽到達的限制。此時,系統的吞吐量為(Walsh序列的階數為r)esucc=∑t=2rt=1N×P(N,n,t)(4)固定時隙數的ALOHA算法的系統吞吐量仿真圖和其與基于碼分多址技術的新型防碰撞算法的比較仿真結果如圖3所示。仿真條件為標簽的到達情況符合泊松過程。仿真圖3給出了RFID系統的讀寫器閱讀100個標簽的識別結果,其中新型算法選用的是Walsh序列,其階數r取值從2變化到3,固定時隙數的ALOHA算法的信息幀長F取值從32變化到64,橫坐標為標簽數N從1變化到100,縱坐標為吞吐量。從仿真結果看,在同樣的到達率的條件下,階數越大,算法的吞吐量越高,系統的識別性能有明顯改善。并且隨著到達率的增加,新型 算法的吞吐量也隨著增加,當標簽到達量與階數相等時,系統吞吐量達到最大,但到達量大于階數時,吞吐量隨著到達率的增加而呈下降趨勢。這是由于當在同一時隙內到達的標簽數量增加到一定程度后,基于Walsh序列階數r的有限性,選用相同的Walsh序列作為擴頻碼的標簽數量將會增加,此時必然導致碰撞的增加。當選用的Walsh序列階數為3時,基于碼分多址技術的新型防碰撞算法的系統吞吐量可高達3.2,遠高于時隙ALOHA的0.368。而且隨著Walsh序列階數的提高,吞吐量的最大值還可以提高,但這會以增加讀寫器和標簽的硬件復雜度為代價,在實際使用中必須根據需求在吞吐量和Walsh序列階數中作出折中選擇。
3結束語
本論文在標簽的到達情況符合泊松過程的情況下,利用碼分多址技術的多址通信能力,結合分組幀時隙ALOHA算法的優勢,創新地提出了一種RFID系統中基于碼分多址技術的新型防碰撞算法。理論和仿真實驗表明:同已有的標簽防碰撞算法相比,本論文提出的新型算法提高了標簽數量龐大時的系統性能,能有效地減小標簽之間的碰撞概率,縮短讀寫器操作時間,提高吞吐率, 很適合應用于具有較大數量標簽的RFID系統中。
篇6
上世紀70年代末,誕生了被稱為第一代蜂窩移動通信系統的雙工FDMA模擬調頻系統,但由于模擬系統固有的先天缺陷,在90年代初被以TDMA為基礎的第二代數字蜂窩移動通信系統所取代,相對FDMA系統有諸多優點,如頻譜利用率高,系統容量大、保密性好等。與此同時產生了以CDMA為基礎的數字蜂窩通信系統,相比TDMA系統具有低發射功率、信道容量大、軟容量、軟切換、采用多種分集技術等優點。
隨著網絡的廣泛普及,圖像、話音和數據相結合的多媒體和高速率數據業務的業務量大大增加,人們對通信業務多樣化的要求也與日俱增,而一代二代系統遠遠不能滿足用戶的這些需求,所以誕生了第三代移動通信技術,它能夠處理圖像、音樂、視頻流等多種媒體形式,提供包括網頁瀏覽、電話會議、電子商務等多種信息服務。國際上承認的3G標準有三個:CDMA2000、WCDMA以及TD-SCDMA,這里主要從各個方面做WCDMA和CDMA2000的對比研究。
二、WCDMA和CDMA2000的綜合比較
由于WCDMA和CDMA2000這兩種技術都是將CDMA技術用于蜂窩系統,許多的思想都是源于CDMA系統,因此WCDMA和CDMA2000有許多相試之處:從雙工方式上看,WCDMA和CDMA2000屬于FDD模式。WCDMA和CDMA2000都滿足IMT-2000提出的技術要求,支持高速多媒體業務、分組數據和IP接入等。但它們在技術實現、規范標準化、網絡演進等方面都存在較大差異。
WCDMA和CDMA2000各有優勢和缺點。WCDMA技術較成熟,能同廣泛使用的GSM系統兼容;相比第二代通信系統能提供更加靈活的服務;而且WCDMA能靈活處理不同速率的業務。其缺點是只能共用現有GSM系統的核心網部分,無線側設備可以共用的很少。
CDMA2000的優勢是可以和窄帶CDMA的基站設備很好地兼容,能夠從窄帶CDMA系統平滑升級,只需增加新的信道單元,升級成本較低,核心網和大部分的無線設備都可用。容量也比IS-95A增加了兩倍,手機待機時間也增加了兩倍。缺點是CDMA2000系統無法和GSM系統兼容。
1.WCDMA與CDMA2000的物理層技術比較
WCDMA和CDMA2000物理層技術細節上有相似也有差異,由于考慮出發點不同,造成了不同的技術特點。WCDMA技術規范充分考慮了與第二代GSM移動通信系統的互操作性和對GSM核心網的兼容性;CDMA2000的開發策略是對以IS-95標準為藍本的窄帶CDMA的平滑升級。
(1)這兩個標準的物理層技術相似點可以歸納為以下幾點:
①內環均采用快速功率控制。CDMA系統是干擾受限系統,因此為了提高系統容量,應盡可能的降低系統的干擾。功率控制技術可以減少一系列的干擾,這意味著同一小區內可容納更多的用戶數,即小區的容量增加。因此CDMA系統中引入功率控制技術是非常必要的。
②系統都支持開環發射分集,信道編碼采用卷積碼和Turbo碼。
③系統均采用軟切換技術。所謂軟切換是指移動臺需要切換時,先與新的基站連通再與原基站切斷聯系,而不是先切斷與原基站的聯系再與新的基站連通。軟切換只能在同一頻率的信道間進行,因此模擬系統、TDMA系統不具有這種功能。軟切換可以有效地提高切換的可靠性,大大減少切換造成的掉話。
④WCDMA工作頻段:1900~2025MHz頻段分配給FDD上行鏈路使用,2110~2170MHz頻段分配給FDD下行鏈路使用,2110~2170MHz頻段分配給TDD雙工方式使用。其中WCDMA和CDMA2000利用1900~2025MHz頻段(上行),2110~2170MHz(下行)。
(2)兩個標準的物理層技術差異可以歸納為以下幾點:
①擴頻碼片速率和射頻帶寬。WCDMA根據ITU關于5MHz信道基本帶寬的劃分規則,將基本碼片速率定為3.84Mcps。WCDMA使用帶寬和碼片速率是CDMA2000-1X的3倍以上,能提供更大的多路徑分集、更高的中繼增益和更小的信號開銷。CDMA2000分兩個方案,即CDMA2000-1X和CDMA2000-3X兩個階段。CDMA2000系統可支持話音、分組數據等業務,并且可實現QoS的協商。室內最高數據速率達2Mbit/s,步行環境384kb/s,車載環境144kb/s。CDMA2000在前向和反向CDMA信道在單載波上采用碼片速率1.2288Mcps的直接序列擴頻,射頻帶寬為1.25MHz。
②支持不同的核心網標準。WCDMA要求實現與GSM網絡的兼容,所以它把GSMMAP協議作為上層核心網絡議;CDMA2000要求兼容窄帶CDMA,因此它把ANSI-41作為自己的核心網絡協議。
③WCDMA進行功率控制的速度是CDMA2000的2倍,能保證更好的信號質量,并支持多用戶。
④為了使支持基于GSM的GPRS業務而部署的所有業務也支持WCDMA業務,為了完善新的數據話音網絡,CDMA2000-1x需要添加額外的網元或進行功能升級。
2.WCDMA與CDMA2000網絡接口的比較
3G標準的基本目標是能在車載、步行和靜止各種不同環境下為多個用戶分別提供最高為144kbit/s、384kbit/s和2048kbit/s的無線接入數據速率。為多個用戶提供可變的無線接入數率是3G標準的核心要求。CDMA2000可分別用于900MHZ和2GHZ兩個頻段CDMA2000的碼片速率與IS-95相同,兩系統可以兼容。WCDMA的碼片速率為3.84Mcps,顯然WCDMA系統中低速率用戶或語音用戶的移動臺成本會大幅上升,在CDMA2000系統中則不會如此。
WCDMA的接口標準規范、制定嚴謹、組織嚴密,而CDMA2000的接口標準嚴謹性有待加強。IS-95廠家設備難以互通,給運營商設備選型帶來了較大問題;3G許諾的高速無線數據服務必須可以和話音一樣實現無縫的漫游,這是至關重要的。多媒體信息要漫游、視頻通話也要漫游,沒有這些基本要素,3G就不能稱其為3G。漫游涉及到的不僅僅是技術問題,更重要的是商業利益。在這方面WCDMA顯然更勝一籌,它支持全球漫游,全球移動用戶均有唯一標識,而CDMA2000尚不能很好做到這一點。
3.WCDMA和CDMA2000網絡演進的比較
(1)WCDMA的網絡演進技術
現有的GSM系統利用單一時隙可提供9.6kbit/s的數據服務。如果復用多個時隙就能升級為HSCSD(高速電路交換數據)方式;此后出現了GPRS(通用分組無線業務),首次在核心網中引入了分組交換的方式,可提供144kbit/s的數據速率。接著繼續升級采用8PSK調制,這樣傳輸速率可以上升至384kbit/s這就是EDGE;WCDMA的數據傳輸速率將高達2M/s。
(2)CDMA2000網絡演進技術
主要的CDMA2000運營商將來自現在的窄帶CDMA運營商。窄帶CDMA向CDMA2000過渡的方式為IS-95AIS95BIS-95CIMT2000。IS-95A的數據傳輸速率為14.4kbit/s,為了提供更高的速率,1999年部分廠商開始采用IS-95B標準,理論上支持115.2kbit/s的速率。IS-95C進一步使容量加倍,最后升級為CDMA2000。
窄帶CDMA系統向CDMA2000系統的演進分為空中接口、網絡接口及核心網絡演進等方面。
①目前窄帶CDMA系統的空中接口是基于IS295A,其支持的數據速率為14.4kbit/s,由IS295A升級到IS295B,可支持64kbit/s。
②窄帶CDMA網絡接口的演進主要指窄帶CDMA系統A接口的升級和演進。對于窄帶CDMA系統,以前其A接口不是規范接口(即不是開放接口),窄帶CDMA和GSM的A接口的規范相比較,GSM是先有A接口標準,然后廠家依據標準開發;窄帶CDMA是廠家各自開發,然后廣泛宣傳,最后憑借自身影響修改標準。
③窄帶CDMA的核心網在美國經過多年發展后,從IS241A到IS241B到IS241C,我國CDMA試驗網和紅皮書以IS241C為基礎,IS241D規范在1999年底,目前IS241E規范還未正式。
三、WCDMA和CDMA2000在我國的前景
對3G標準的選擇不僅要看其技術原理及成熟程度,還要結合本國國情、市場運作狀況等因素進行考慮。按目前的進展來看,兩種標準最后不能融合成一種,但可以共存。
在我國,GSMMAP網絡已形成巨大的規模,歐洲標準的WCDMA在網絡上充分考慮到與第二代的GSM的兼容性,在技術上也考慮了與GSM的雙模切換兼容,向WCDMA體制的第三代系統演進,從一開始就解決了全網覆蓋的問題。而且CDMA2000采用GPS系統,對GPS依賴較大;在小區站點同步方面,CDMA2000基站通過GPS實現同步,將造成室內和城市小區部署的困難,而WCDMA設計可以使用異步基站,運營者獨立性強;對于電信設備制造行業,我國在GSM蜂窩移動通信方面發展成熟,而窄帶CDMA系統尚未形成規模和產業。
WCDMA采用全新的CDMA多址技術,并且使用新的頻段及話音編碼技術等。因此GSM網絡雖然可采用一些臨時的替代方案提供中等速率的數據服務,卻不能提供一種相對平滑的路徑以過渡到WCDMA。而CDMA2000的設計是以IS-95系統的豐富經驗為依據的,因此窄帶CDMA向CDMA2000的演進無論從無線還是網絡部分都更為平滑。在基站方面只需更新信道板,并將系統軟件升級,即可將IS-95基站升級為CDMA2000基站。
由此可見,WCDMA和CDMA2000還將長時間在我國共存,鹿死誰手?尚未分曉。
參考文獻:
篇7
隨著3G時代的到來,“移動通信”教學內容面臨重大變革,對相應的實驗教學也提出了更高的要求。首先,移動通信實驗教學要注重所講授內容的基礎性。實驗教學中應將移動通信領域基礎知識的講授和基本技能的培養作為教學工作的首要任務。其次,移動通信實驗教學要注重所講授內容的應用性[1,2]。通過實驗教學能使學生對當前正在采用的技術產品以及標準規范有明確的認知;最后,移動通信實驗教學要注意所講授內容的前瞻性。實驗教學中應該通過合理引導使學生對很有發展前景但尚處于研究階段的新技術、新成果給予關注[3-5]。但與理論課程教學相比,移動通信實驗往往學時有限,實踐環節簡單。這就使得移動通信實驗教學成為通信類專業課實驗教學矛盾的突出體現者[5-7]。在立足高校教學的實際情況的基礎之上,我們結合多個不同的教學環節,建立了一種開放式的移動通信實驗教學新體系。該體系以關鍵技術和系統教學為基礎,融合基本理論學習、關鍵(新型)技術仿真、通信系統實驗、實用技術實訓,逐步強化學生對移動通信系統的工程意識和實際操作的工程技能。通過幾年的探索與實踐,達到了良好的教學效果。
一、移動通信實驗教學內容及現狀
當前階段移動通信實驗教學內容主要應該圍繞以下幾方面開展:①移動通信信道特性:主要涉及到無線電波傳播特性、移動信道的多徑及衰落特征、移動信道的傳播損耗及傳播模型、抗衰落技術。②移動通信中的基本調制技術:例如,數字頻率調制、數字相位調制、正交振幅調制等。③移動通信組網技術:主要有多址技術、區域覆蓋和信道配置、網絡結構、信令、越區切換和位置管理等問題。④現行的移動通信網絡標準:時分多址數字蜂窩系統、碼分多址移動通信系統、3G技術標準等;⑤移動及無線通信中的新技術[8,9]。由于高校實際情況限制,所開設的移動通信實驗課很難全面涵蓋這些內容,尤其是涉及到移動通信網絡的內容時,更顯得力不從心。這樣在有限學時內就導致實驗內容只能側重于基本調制技術、信道特性等基礎簡單實驗,即便是開設GSM/CDMA的相關實驗,也只是停留在相應模塊的功能應用上,很難有深層次的提高[11-13]。這就使得學生反映移動通信理論課程很精彩,實驗課程很乏味。為了改變這一現狀,必須探索新的實驗教學思路,創立新的實驗教學體系。
二、移動通信實驗教學開放體系
新的移動通信實驗教學體系,將先修課學習、工業實習、理論課學習、實驗課開展、畢業論文等多個教學環節進行整合,形成從基礎理論仿真到專業實驗操作、工程技術實訓、創新實驗等一個開放的實驗教學體系。
通過通信類先修課程的學習,使學生準備好相關的基礎知識,同時也對移動通信在課程體系中的地位有明確的定位[14,15]。相應編程語言類課程的學習更為實驗仿真提供了良好的基礎。移動通信理論課程的講授為實驗課程的開設提供了直接的理論平臺。工業實習安排在移動通信實驗課開設前一學期開展,實習內容是到各通信運營商公司和設備廠家進行跟崗實習,涉及到的內容有:移動通信系統基站的建設與維護;交換與傳輸系統管理和維護;光纖傳輸設施維護;移動終端制造與維修;3G應用等多個方面。通過工業實習使學生對當前移動通信所涉及到具體問題有了充分的感性認識,這對之后實驗教學的開展,特別是移動網絡方面實訓的進行有很好的促進作用。移動通信實驗教學的開展涵蓋以下幾個方面:基礎理論仿真、專業實驗操作、工程技術實訓、創新實驗、畢業設計。基礎理論仿真是利用MATLAB軟件實現:QPSK調制及解調;MSK、GMSK調制及相干解調;QAM調制及解調;OFDM調制解調;m序列產生及特性分析;Gold序列產生及特性分析;數字鎖相環載波恢復;Rake接收機仿真實驗。例如,OFDM調制解調實驗,按照圖2OFDM仿真結構圖,利用MATLAB程序實現圖2中不同測試點處的信號波形。
篇8
新的移動通信實驗教學體系,將先修課學習、工業實習、理論課學習、實驗課開展、畢業論文等多個教學環節進行整合,形成從基礎理論仿真到專業實驗操作、工程技術實訓、創新實驗等一個開放的實驗教學體系。
通過通信類先修課程的學習,使學生準備好相關的基礎知識,同時也對移動通信在課程體系中的地位有明確的定位[14,15]。相應編程語言類課程的學習更為實驗仿真提供了良好的基礎。移動通信理論課程的講授為實驗課程的開設提供了直接的理論平臺。工業實習安排在移動通信實驗課開設前一學期開展,實習內容是到各通信運營商公司和設備廠家進行跟崗實習,涉及到的內容有:移動通信系統基站的建設與維護;交換與傳輸系統管理和維護;光纖傳輸設施維護;移動終端制造與維修;3G應用等多個方面。通過工業實習使學生對當前移動通信所涉及到具體問題有了充分的感性認識,這對之后實驗教學的開展,特別是移動網絡方面實訓的進行有很好的促進作用。移動通信實驗教學的開展涵蓋以下幾個方面:基礎理論仿真、專業實驗操作、工程技術實訓、創新實驗、畢業設計?;A理論仿真是利用MATLAB軟件實現:QPSK調制及解調;MSK、GMSK調制及相干解調;QAM調制及解調;OFDM調制解調;m序列產生及特性分析;Gold序列產生及特性分析;數字鎖相環載波恢復;Rake接收機仿真實驗。例如,OFDM調制解調實驗,按照圖2OFDM仿真結構圖,利用MATLAB程序實現圖2中不同測試點處的信號波形。
工程技術實訓階段則是利用3G天線獲取實際信號,利用頻譜分析儀等儀器實現CDMA2000、WCDMA、TD-SCDMA信號的分析。同時實現基站放大器、塔頂放大器性能指標的測試。例如,圖4中給出利用頻譜分析儀所測得實際CDMA2000和WCDMA信號的頻譜特性。
創新實驗階段主要是針對有興趣參加各類設計競賽的學生開展,將全國及各省、校級電子設計大賽題目進行改造,從中選取與移動或無線通信有關,且具有創新性、前瞻性、實用性的方案,經過適當修改作為創新實驗階段的實驗案例。學生可以通過這樣的實驗案例了解各級大賽的要求及特點,教師則也可以在實驗教學過程中,選拔優秀學生參加各級大賽,進而提高學生的能力和水平。畢業設計階段主要是利用實驗室實驗條件,從學院承擔的科研項目中,將某些項目進行簡化、修改、重組,轉化成通信專業類論文題目,或從本專業最新的科技論文中選擇其中合適的內容進行改進,作為通信專業類綜合性畢業設計案例,從而將先進的科研成果打造為優質教學資源,實現基礎與前沿、經典與現代的結合。為通信類專業學生提供了廣闊的選擇空間和開放的培養環境??傊苿油ㄐ艑嶒灲虒W體系中基礎理論仿真、專業實驗操作和工程技術實訓是必修課程教學內容,是實驗教學的基礎與根本[16]。創新實驗、畢業設計則是移動通信實驗向之后教學、實踐環節的擴展與延伸。這樣由必修和擴展環節共同構建起移動通信實驗教學開放體系。
本文作者:馮敏羅清龍作者單位:聊城大學
篇9
1直放站的定義
直放站(又叫中繼器)屬于同頻放大設備,是指在無線通信傳輸過程中起到信號增強的一種無線電發射中轉設備。無論是GSM直放站、CDMA直放站還是3G直放站,其原理是基本相同的。直放站的基本功能就是一個射頻信號功率增強器。
2直放站的分類
2.1從傳輸信號分有GSM直放站、CDMA直放站和3G直放站
2.1.1GSM移動通信直放站是為消除GSM900MHz/1800MHz頻段移動通信網的小范圍信號盲區或弱信號區而設計生產的通信設備。被廣泛應用于地下商場、停車場、地鐵、隧道、高層建筑的辦公室等基站信號所無法到達的信號盲區,同時對于消除城市因受高樓大廈影響而產生的室外局部信號陰影區或邊遠郊區個別村鎮的弱信號區也具有相當好的覆蓋效果。
2.1.2CDMA直放站可以擴大CDMA基站的覆蓋范圍,大大節省CDMA網絡建設的投資(一個CDMA直放站的投資約為一個CDMA基站的十分之一)。特別是在高層樓宇、地下(如地鐵)、以及盲區等特殊環境下,CDMA直放站將充分發揮它的優勢。由于各種地理環境和用戶的要求不同,所需的CDMA直放站的類型也不同。
2.1.3CDMA直放站是為了消除移動通信網覆蓋盲區或弱信號,延伸基站信號覆蓋的一種中繼設備,它能解決消除城市因受高樓大廈影響而產生的室外局部信號陰影區,地下停車場、地下隧道、商場、電梯等基地無法到達信號的盲區,提高了覆蓋范圍增強了信號覆蓋延伸。
2.1.4與傳統的2G無線通信系統相比,由于3G無線通信系統主要使用的頻段在2000MHz附近,根據電波傳播衰減規律,顯然3G的無線信號比2G的無線信號衰減得更快。這樣,在同等功率情況下的3G基站和直放站的覆蓋范圍都比2G的要小。所以在達到與2G網絡同等的覆蓋水平時,需要更多的直放站來完成網絡覆蓋。由此我們可以預期,在即將到來的3G無線網絡建設中,直放站也必然仍將扮演著重要的角色。
2.2從傳輸帶寬來分有寬帶直放站和選頻(選信道)直放站
2.2.1GSM移動通信寬帶直放站的主要特點:
高的系統增益且增益連續可調;采用先進的數字濾波技術,帶外抑制特別好;全雙工工作,很高的上/下行隔離度;兩端口標準設計,安裝極為方便;內置電源且設計有電源保護系統和免維護備用電源接口;采用ALC技術,輸出電平連續可調,穩定可靠;可選智能監控,故障自動報警及遠程維護;高線性功放,性能穩定等。
2.2.2GSM移動通信頻帶選擇直放站的主要特點:
高的系統增益且增益連續可調;全雙工工作,很高的上/下行隔離度;中心頻率和帶寬任意可調,滿足不同客戶要求,帶外抑制好,不同營運商之間的信號不會產生相互干擾;內置電源且設計有電源保護系統和免維護備用電源接口;兩端口標準設計,安裝極為方便;采用PLL控制技術的選頻模塊,性能穩定可靠,噪聲系數低等。
2.3從傳輸方式來分有無線直放站、光纖直放站和移頻傳輸直放站
2.3.1無線傳輸直放站
下行從基站接收信號,經放大后向用戶方向覆蓋;上行從用戶接收信號,經放大后發送給基站。為了限帶,加有帶通濾波器
2.3.2光纖傳輸直放站
將收到的信號,經光電變換變成光信號,傳輸后又經電光變換恢復電信號再發出。
2.3.3移頻傳輸直放站
將收到的頻率上變頻為微波,傳輸后再下變頻為原先收到的頻率,放大后發送出去。
3直放站的應用
直放站可以擴大服務范圍,消除覆蓋盲區,如高山,建筑物,樹林等阻擋物而形成的信號盲區;在郊區能夠增強場強,擴大郊區站的覆蓋;沿高速公路架設,增強覆蓋效率;還可以解決室內覆蓋,如大型建筑物內信號衰減信號盲區、地下商城、遂道等衰減信號盲區;另外,將空閑基站的信號引到繁忙基站的覆蓋區內,實現疏忙等。
3.1公路、郊區重點農村的覆蓋
隨著社會的發展,高速公路逐漸增多,公路的覆蓋成為一個很大難題,為了有效節約資源,直放站在這里得到了廣泛應用。,某條高速公路如果全部利用宏基站覆蓋,共計需要15個宏基站,采用宏基站帶直放站方式,只需要8個宏基站,在很大程度上節約了成本。
3.2“L”型覆蓋
某一風景區位于山谷中,距離基站不到4公里,但由于被山脈阻擋,根本無網絡信號。在山脈的盡頭安裝一直放站,由于直放站接收信號的方向和發射信號的方向成一定的角度,相當于基站的電波在直放站處轉了一個彎。依靠山體的阻擋,直放站的施主天線和服務天線分別放在山體的兩側,隔離度很大,直放站的性能可以充分發揮,很好地解決了該風景區用戶的通信問題,還使該基站的通信距離向山谷里延伸了6公里。
3.3開闊地域的覆蓋
人口分布較少的開闊地域是使用直放站進行覆蓋的典型場合。當直放站采用全向天線時,只要有一定的鐵塔高度,在直放站工作正常的情況下,3公里內可以明顯地感覺到直放站的增益作用。但距離超過5公里以后,直放站的增益作用就迅速消失,用手機進行基站接收信號電平測試,無論直放站是否工作,接收電平都沒有明顯變化。這是因為在平原開闊地區,房屋建筑和地形地貌造成的傳輸衰耗相對較小,而隨空間距離的增加,電波按32.45+20logf(MHz)+20logD(公里)的規律衰減;即距離每增加一倍,電波衰減6dB。
4直放站的優點及不足
4.1直放站的優點
4.1.1同等覆蓋面積時,使用直放站投資較低。在平原地區室外一個全向基站可以有10km覆蓋半徑;一個全向直放站可以有4km覆蓋半徑;就覆蓋面積而言,六個直放站約相當于一個基站。六個直放站的設備價約為一個基站的80%。但考慮到機房租用和裝修、交直流電源、空調、傳輸系統和電路租金等費用,六個直放站的費用只相當于于一個基站的50%,甚至更低。
4.1.2覆蓋更為靈活。一個基站基本上是圓形覆蓋,多個直放站可以組織成多種覆蓋形式。如“一”字型排開,可以覆蓋十幾至幾十公里的路段。也可以組織成“L”型、“N”型和“M”型覆蓋,特別適合于山區組網。
4.1.3在組網初期,由于用戶較少,投資效益較差,可以用一部分直放站代替基站。用戶發展起來后現更換為基站,替換下來的直放站再進一步放置在更邊緣的地區,這樣一步步地滾動發展。
4.1.4由于不需要土建和傳輸電路的施工,建網迅速。
4.2直放站的不足
不能增加系統容量。
4.2.1引入直放站后,會給基站增加約3dB以上的噪音,使原基站工作環境惡化,覆蓋半徑減少。所以一個基站的一個扇區最好帶兩個以下的直放站工作。
4.2.2直放站只能頻分不能碼分,一個直放站往往將多個基站或多個扇區的信號加以放大。引入過多的直放站后,導致基站短碼相位混亂導頻污染嚴重,優化工作困難,同時加大了不必要的軟切換。
篇10
3G Communication Technology Study
Jiang Xiaojie
(Wuhan Textile University Sun Campus,Wuhan 430011,China)
Abstract:This paper outlines the definition of 3G communications technology,analysis of the 3G wireless network technology,3G video phone technology,and comparative analysis of various types of 3G technology standards.
Keywords:3G;Communications technology;Wireless network;Terminal technology;Video Phone
前言:3G是英文3rdGeneration的縮寫,指第三代移動通信技術。相對第一代模擬制式手機(1G)和第二代GSM、TDMA等數字手機(2G),第三代手機一般地講,是指將無線通信與國際互聯網等多媒體通信結合的新一代移動通信系統。
一、3G無線網絡技術
由于移動通信用戶數量的迅速增加和不斷推出新的業務要求,現有頻率資源、網絡容量已經無法支撐未來業務餓發展,必須在空中接口中改變調制方式和技術體制,提升移動通信網絡的負載能力。目前3G無限接入將采用新一代的CDMA技術,主要有3種體制:CDMA2000、WCDMA、TD-SCDMA。
(一)CDMA無線接入能力
CDMA2000是由2G的IS-95發展而來的,標準由3GPP2組織制訂,版本包括Release0/A、EV-DO和EV-DV。到2.5G時,IS-95/A/B都發展為CDMA20001X技術,對應有CDMA2000的Release0/A版本,在繼續發展為符合3G要求的標準時,出現了兩個分支:CDMA2000 1XEV-DO和CDMA2000 1XEV-DV。
CDMA2000 EV-DO可以在1.25MHz標準載波中支持平均速率為600kbit/s、峰值速率為2.4Mbit/s的高速數據業務,是在單獨的載波上提供分組數據業務而不支持話音。所以它必須與CDMA2000 1X互為補充,為用戶提供分組數據業務和話音業務。當1X/DO雙模終端工作在DO網上,可以通過監聽1X網的尋呼信道避免錯過話音呼叫。因此,這種技術體系要求與原有2.5G提供話音業務的網絡疊加,實現話音和分組數據業務。
CDMA2000EV-DV可以在一個1.25Mhz的標準載波中,同時提供話音和高速分組數據業務,最高速率可達3.1Mbit/s,并兼容IS-95和CDMA2000 1X終端。這種技術體系能夠在同一網絡上完整的提供話音業務和分組數據業務,支持話音與分組數據業務的并發功能。
(二)WCDMA無線接入能力
WCDMA標準由2G的GSM發展而來,由3GPP組織制訂,目前已經有五個版本,即R99、R4、R5、R6、R7,其中R99版本已經穩定,目前處于完善過程中。它的主要特點是空口采用WCDMA技術,核心網分為電路域和分組域,分別支持話音業務和數據業務,并提出了開放業務接入(OSA)的概念,最高下行速率可以達到384kbit/s。
(三)TD-SCDMA無限接入能力
TD-SCDMA標準也由3GPP組織制訂,目前采用的是中國無線通信標準組織制訂的TSM標準,基于TSM標準的系統其實就是在GSM網絡支持下的TD-SCDMA系統。TSM系統的核心思想就是在GSM的核心網上使用TD-SCDMA的基站設備,其A接口和Gb接口與GSM完全相同,只需要對GSM的基站控制器進行升級。一方面利用3G的頻譜來解決GSM系統容量不足,特別是在搞密度用戶區容量不足的問題;另一方面可以為用戶提供初期最高達384kbit/s的各類數據業務,所以基于TSM標準的TD-SCDMA系統對已有GSM網的運營商是一種很好的選擇。TD-SCDMA已經融入3GPP的R4及后續標準中。
二、3G可視電話技術
H.324M標準指的是H.324標準的“移動部分”擴展。H.324協議指定了如何用同步V.34Modem來進行基于POTS的多媒體通信。H.223移動部分附件在錯誤保護和控制方面做了一些功能定義,這些都有效的使多路復用器在無線網絡環境中增強了抗數據通信錯誤的能力。H.324中使用了ITUH.245建議構成其命令、控制和指示的組件。H.245為H.223總移動擴展部分提供了附加餓命令和控制流程。3GPP采納H.324建議,為3G網絡傳統視頻電話定了一個標準,并命名為3G-324M,且針對話音、視頻和多路復用操作提出了如下要求:GM-AMR稱為音頻編碼的可選編碼標準之一;強制規定ITUH.263為視頻編碼標準;添加H.223附件B用來保護復用數據。
三、3G技術的比較
三種標準均采用了CDMA技術,但是WCDMA與TD-SCDMA在系統容量的關鍵技術方面源于CDMA2000,從某種意義上說,WCDMA與TD-SCDMA是為了應對美國在CDMA技術的壟斷地位,由分別歐盟于國內的電信設備提供商通過技術創新發展而來的3G標準。WCDMA和CDMA2000則采用頻分雙工(FDD)方式;而TD-SCDMA采用時分雙工(TDD)方式。
四、結論
盡管3G技術的標準不同,但是3G通信中采用的3G網絡技術、3G可視電話技術都具有通用性,而TD-SCDMA、WCDMA、CDMA2000等不同3G通信標準的競爭,必將為廣大消費者提供優質的3G通信服務。
參考文獻:
[1]張智江.3G業務技術及應用[M].人民郵電出版社,2007,2
篇11
現行UHF RFID空中接口的最大瓶頸是單信道接入,以致碰撞仲裁成為通信協議的核心。防碰撞算法幾經改進,始終沒有根本突破,多讀寫器密集配置更添讀寫器碰撞麻煩。徹底突破UHF RFlD空中接口接入能力瓶頸的思路唯有多信道接入,即接入網接入,唯一可能的技術途徑是在UHF RFID空中接口引入碼分接入。
直接序列擴展頻譜(DSSS),提供了一種提高信號抗干擾能力的技術手段。正交序列編碼調制,奠定了碼分接入技術基礎,其多信道共用載波、無需頻道選擇的特點更加適合于無源標簽UHF RFID空中接口的應用環境。
對此有兩種不同的認識:一種認為當今的直接序列擴展頻譜和碼分接入系統對于RFID空中接口而言,“復雜”、“困難”和“不可能”。另一種是探索適合于UHF RFID空中接口特定環境,尋找與移動通信不同的技術實現方法,力求實現UHF RFID應用條件下的碼分接入。
2 UHF RFlD空中接口單信道接入體制
這是無可奈何的選擇:
(1)受限于無源標簽的工藝條件。無源標簽不具備頻道選擇能力,不可能采用頻分接入(FDMA)實現多用戶接人。
(2)受限于無源標簽的功耗條件。芯片的功耗與工作頻率的平方成正比,時分接入(TDMA)的系統總速率等于各時分信道速率之和,無源標簽不可能靠增大總工作速率來提高接入能力。Aloha算法和二叉樹算法及其改進算法,本質上都屬于時分接入,與移動通信不同點在于移動通信TDMA信道總速率等于用戶速率與接入用戶數的乘積,單信道射頻識別信道速率保持單用戶速率不變。
(3)受限于無源標簽的復雜度。碼分接入被認為“復雜”、“困難”和“不可能”,詳見第4節。
3 ISO/IECl 8000標準的期待
ISO/IECl8000第一部分給出了ISO/IEC18000的一系列定義,包括DSSS占用信道帶寬、擴展頻譜序列、chip率、chip率精度等參數。在每一冊分標準的協議參數部分,凡讀寫器到標簽鏈路和標簽到讀寫器鏈路參數表格中都留下了擴展頻譜序列、chip率、chip率精度等條目,在子條款中則加注“不用”。甚至在135kHz以下的ISO/lECl8000-2和13 56MHz頻段的ISO/lECl8000-3中也如法炮制,在相應章節保留條目,加注“不用”。
如此安排說明,標準編制者十分看重擴展頻譜技術,為今后條件成熟時加入相關內容留足空間,而且歷經十余年始終不舍棄,可見標準制定者期待之甚。
然而,CDMA不只是擴展頻譜,擴展頻譜技術本身只是做了把頻譜資源轉換為功率資源的工作,也就是改善了接收端信號接收能力。更重要的還需要再把獲得的功率資源轉化為系統工作能力,如移動通信所做的實現正交多信道接入,甚至碼分組網。就這個層面而言,只預留擴展頻譜參數尚顯不夠。
4 望而卻步者所說
CDMA技術因其在移動通信中的成功應用,而使RFlD業界深受誘惑;同時又因其在移動通信中實現方案的復雜度,而令RFID業界望而生畏。望而卻步者斷定:在RFID空中接口引入CDMA技術,
復雜――在于cDMA系統通信組織中,多個邏輯信道,多種實體代碼,所用多種序列的產生和相關檢測,以及嚴格的系統同步需求;
困難――在于RFID的用戶端設備是電子標簽(以下簡稱“標簽”),要求低成本、無源(接收讀寫器射頻能量對標簽供電);
不可能――無源標簽只限于CMOS集成電路工藝,相當于直接序列擴展頻譜系統,終端功能不可能在標簽上實現。
5 努力追尋者所做
2009年波蘭學者Gustaw Mazu rek發表了《應用擴展頻譜發送的有源RFID系統》一文,文中給出了有源RFID空中接口的應用擴展頻譜技術的計算機仿真結果。其特點是標簽由電池供電,只發不收,使用16個127位GoId序列,實現有源標簽碼分多信道發射。其之所以針對有源標簽,說明功耗問題沒法解決;其之所以只發不收,是因為找不到適合于標簽(甚至是有源標簽)上實現的擴展頻譜信號相干接收解擴方案;其之所以只做了仿真,說明這僅僅是一個關鍵課題,還沒有形成完整的系統設計。
當然這項研究也說明,國外也在探索UHF RFlD空中接口新體制,包括RFlD空中接口引入CDMA技術。
臺灣大學劉馨勤等曾使用霍夫曼(Huffman)序列作為RFID碼分接入擴展頻譜序列,但其異步互相關值較大,影響系統性能。
元智大學郭芷琮以相互正交格雷互補序列集合為RFID擴展頻譜序列,以碼分接入的方法處理RFID系統標簽信號異步時碰撞的問題。若兩標簽使用不同的相互正交格雷互補集合擴展頻譜,無論各標簽間接收信號是否同步,相互都不會有任何干擾。若兩標簽使用同一組相互正交格雷互補集合擴展頻譜,只要兩標簽傳送的碼元擴展頻譜序列到達讀寫器時間不同,也可在沒有相互干擾的情況下讀取各標簽傳送資料,模擬結果比文獻中使用霍夫曼序列的性能更好。但是正交格雷互補序列數不足,可能成為擴大系統功能的障礙。
本人從系統的角度出發,改變傳統的雷達模型思維,以通信思維指導系統設計,從分析UHF RFID應用環境入手,通過合適的序列選擇,利用移位m序列族內在關聯特性處理多標簽并行應答,采用多讀寫器正交碼分組網方法,完成了系統架構和關鍵技術方案(見該系列后續論文),預期可適應物聯網發展的需求。
篇12
(一)移動客戶群龐大
根據工業和信息化部的數據顯示,2009年中國手機終端的數量已經達到7.74億,接近上網用戶數量的3倍,而來自CNNIC的數據顯示,2009年底中國手機網民的數量已突破2.33億,手機網民規模呈現迅速增長的勢頭。這表明我國移動電子商務業務的發展具有巨大的潛力。艾瑞咨詢預計,2011年移動電子商務營收規模將達到1.7億元。
(二)國家政策支持
包括移動電子商務在內的電子商務被列入了2006年3月頒布的《國民經濟和社會發展信息化“十一五”規劃》。2007年6月,發改委與原國務院信息辦又專門出臺了《電子商務發展“十一五”規劃》,其中移動電子商務試點工程作為六大重點引導工程之一。規劃中明確指出“鼓勵基礎電信運營商、電信增值業務服務商、內容服務提供商和金融服務機構相互協作,建設移動電子商務服務平臺”、“發展小額支付服務、便民服務和商務信息服務,探索面向不同層次消費者的新型服務模式”,并確定了轉變經濟發展方式、方便百姓生活和帶動戰略產業發展的三大目標,三大目標正在逐步實現,初步顯現了移動電子商務巨大的效益和潛力。
(三)無線基礎設施建設迅速
近年來,政府加大了對電信基礎建設的投資力度,中國移動、中國電信和中國聯通三大電信運營商在2009年8月前完成了其3G網絡的第一階段部署工作。基于CDMA的3G服務,即中國電信的CDMA2000和中國聯通的WCDMA,發展迅速。相比之下,中國移動的TD-SCDMA3G技術的商業化進程比預期緩慢。在網絡部署方面,中國電信在3G領域方面動作最快,預計它將發動價格戰以吸引更多的用戶。3G網絡的鋪設,加速了我國移動電子商務的發展。
二、目前中國移動電子商務所面臨的問題及對策
(一)理論研究欠缺
篇13
TUO Qiuyan,WANG Fei
(GuangZhou Marine Engineering Corporation,GuangZhou 510250)
Abstract:This paper describes the composition and functions of ship position monitoring system and proposes an appropriate ship position monitoring system for water administration ship after analyzing the selection of communication link and supervised terminal, workflow and expense estimation etc.
Key words: Ship position monitoring system;water administration and Supervision;Commanding ship
1前言
船位監控系統是指依托國際移動衛星組織Inmarsat-C/MiniC 通信系統、陸地GPRS/CDMA基礎網絡通信系統或全球衛星定位系統(GPS)等信道設備,綜合應用地理信息系統(GIS)以及管理信息系統(MIS)實現對作業船舶各種信息進行實時監控的綜合系統。
2系統組成及功能
完整的船位監控系統由執法船舶(或指揮船舶)、作業船舶、信息傳輸網絡以及相關配套軟件等組成。執法船舶是監控系統的信息處理及管理中心,其上的監控設備主要包括:通信鏈路及監控服務器、顯示單元、CTrack™ Marine綜合平臺軟件等軟硬件設備。
作業船舶是本系統的受監控點,其上的監控設備主要有:GPS設備及AIS設備終端、GSM/GPRS/CDMA船載終端、Inmarsat-MiniC站終端等硬件設備。
在整個系統的運行中,執法船舶通過Inmarsat衛星系統等信道設備建立與作業船舶的雙向數據通訊鏈路,向作業船舶發送各類控制指揮報文,作業船舶將執法船舶要求的各種航行及作業信息回傳到執法船舶。執法船舶接收到作業船舶發送的信息后,解析、存儲于系統數據庫中,并標示船位、狀態等信息于顯示系統,便于執法人員直觀的監控各類信息。
船位監控系統可實現如下功能:實時監控各作業船舶;獲取作業船舶的名稱、符號、當前經緯度等;讓特定組別船舶按照一定時間間隔自動報告位置、航速和航向等信息;實時呼叫船舶位置(包括群呼、組呼、單呼和按地理區域呼叫)等。
3船位監控系統在水政監察執法中的應用
珠江河口水域是廣東省河砂開采的主要區域。對珠江河口水域河砂開采活動進行監督管理,維護河砂開采的良好秩序,保護合法采砂者的利益,是水政監察執法船舶的一項重要職責。
一般情況下,當作業船舶在進行作業時,執法船舶及管理機關需要及時了解作業船舶的具置、航行情況、是否到達指定工作區域、具體停留時間等信息,以實現對所管轄水域的全天候監控管理。傳統的水政監察執法采取人工目視直接監管、輪巡值班等方式,往往耗費大量人力、財力,而且執法周期長,效率低。
因此,根據河砂開采過程中水政監察執法的特點,在珠江河口水政監察執法船上應用適合的船位監控系統,實現對珠江河口水域河砂開采活動的高效監督管理是很有必要的。
3.1通信鏈路及監控終端的選取
根據執法船舶所要求的管轄范圍,監控終端可選擇采用衛星信道的Inmarsat-MiniC站(內置GPS)終端、采用VHF信道的AIS設備(內置GPS)終端或采用GSM等蜂窩信道的GSM/GPRS/CDMA船載終端。
MiniC站的特點是可覆蓋全球,且執法船舶可主動獲得作業船舶的信息,但后續通信費用相對較高;AIS設備的覆蓋范圍為VHF范圍,執法船舶可主動獲得作業船舶的信息;GSM/GPRS/CDMA船載終端的覆蓋范圍則為GSM/GPRS/CDMA無線網絡信號覆蓋范圍,執法船舶需有作業船舶的GPS號碼后,被動獲得作業船舶的信息。
珠江河口執法船主要管轄珠江河口水域,該水域屬我國經濟較發達的珠三角地區,其區內各種民用無線通信信道設備建設齊全,中國移動/聯通等無線通信運營網絡如GSM/GPRS/CDMA等,均建設得十分完善、成熟,無線網絡信號具有極高的覆蓋率,基本上實現了全區域信號覆蓋,因此可選用GPS設備及GSM/GPRS/CDMA船載終端。系統體系結構圖如圖1所示。
3.2工作流程
根據前文介紹和分析,珠江河口執法船監控終端選用GPS設備及GSM/GPRS/CDMA船載終端,則船位監控系統工作流程如圖2所示。
3.3費用估算
執法船舶監控中心的配置包括監控服務器、綜合平臺軟件及顯示單元,初始建設費用約30萬人民幣。作業船舶監控終端選用GPS設備及GSM/GPRS/CDMA船載終端,每套約1萬元,可實現監控范圍為GSM/GPRS/CDMA無線網絡信號覆蓋范圍。
4小結
船位監控系統的配備,將使得珠江口海域各采砂企業的采砂船全部納入監控,可及時、有效地獲取每艘采砂船的實時船位、識別采砂船所屬的企業等信息,同時可實現越界報警,防止越界生產及進入非轄定區域采砂等違法情況的發生,實現全天候監控。
綜上所述,在珠江河口執法船配備船位監控系統,將有效提高管理執法水平,在實現對水域的有效管理方面發揮重要作用。
參考文獻
[1]梁東業,譚德寶,宋麗.空間信息技術在水政監察執法中的應用研究