引論:我們?yōu)槟砹?3篇初一數(shù)學(xué)的概念范文,供您借鑒以豐富您的創(chuàng)作。它們是您寫作時的寶貴資源,期望它們能夠激發(fā)您的創(chuàng)作靈感,讓您的文章更具深度。
篇1
1、角的靜態(tài)定義:具有公共點的兩條射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
2、角的動態(tài)定義:一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊。
(來源:文章屋網(wǎng) )
篇2
讓學(xué)生從大量具體例子出發(fā),從他們實際經(jīng)驗的肯定例證中,以歸納方式概括出一類事物的共同本質(zhì)屬性,從而獲得概念叫概念的形成。概念可分為以下幾個心理活動階段,以函數(shù)概念為例進行闡述。
⑴觀察實例,學(xué)生觀察下列事例中,指出變量與變量的關(guān)系。
①以40米/小時速度行駛的汽車,行駛的路程s與時間t。
②用圖表給出的某水庫的存水量Q與水深h。
③某一天氣溫F與時刻t。
④某一次考試的班級學(xué)生成績m與學(xué)號n。
⑤一個數(shù)y是另一個x的平方。
⑵分析共同屬性。分析各實例的屬性,并綜合出共同屬性。如上例中各實例的共同屬性有:①抽象地看成兩變量間關(guān)系②一個變量隨另一個變量變化而變化③一個變量每取定一個值,另一個變量有唯一確定的值與它對應(yīng)。
⑶抽象出本質(zhì)屬性,經(jīng)過猜想,假設(shè)等過程,最后得到一個變量每確定一個值,另一個變量也唯一確定一個值與之對應(yīng),這是本質(zhì)屬性。
⑷比較正反實例,確認本質(zhì)屬性,如例④中反過來n未必是m的函數(shù);例⑤中開平方x=+y 也不是函數(shù),強化本質(zhì)屬性,排除非本質(zhì)屬性。
⑸概括出概念含義,把抽象出的本質(zhì)屬性推廣到同類事物,給出名稱。這時還需要進一步區(qū)分各種本質(zhì)屬性的從屬關(guān)系,找出關(guān)鍵的本質(zhì)屬性下定義。
二、 揭示概念的同化過程
利用學(xué)生認識結(jié)構(gòu)中原有的概念和知識經(jīng)驗,以定義方式直接向?qū)W生提示概念的本質(zhì)屬性,從而獲得概念的方式叫概念的同化。以“一元二次方程”概念教學(xué)為例,提示其同化過程。
⑴觀察概念的定義,名稱和符號,揭示概念的本質(zhì)屬性,例如學(xué)習(xí)“一元二次方程”
這個概念,首先觀察它的定義――含有一個未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程。它的一般形式是ax2+bx+c=0(a≠0),其本質(zhì)屬性有:含有一個未知數(shù),未知數(shù)最高次數(shù)為二次,是整式方程。
⑵對概念進行分類,討論各種特殊情況,進一步突出概念的本質(zhì)屬性,
⑶把新概念系統(tǒng)化,把新概念同化到原認知結(jié)構(gòu)中去。如上例,學(xué)生把一元二次方程同化到原有關(guān)于方程的認知結(jié)構(gòu)之中,區(qū)分一元二次方程與方程,一元一次方程,分式方程,整式方程等概念,并形成一個關(guān)于方程概念的系統(tǒng)。
概念同化的學(xué)習(xí)過程,以學(xué)生間接經(jīng)驗為基礎(chǔ),要求學(xué)生具備較豐富的知識經(jīng)驗,并具有積極思維能力和較高的心理活動水平,但比較省時。
三、 重視概念的建構(gòu)過程
建構(gòu)主義認為,學(xué)習(xí)的過程是一個主動建構(gòu)的過程,建立起新的認知結(jié)構(gòu),是其經(jīng)驗與認識的投入和重建,是一種具有探索性的再創(chuàng)活動。要求教師是數(shù)學(xué)建構(gòu)活動的深謀遠慮的設(shè)計者、組織者、參與者、指導(dǎo)者和評估者?,F(xiàn)以“直線的傾斜角與斜率”一節(jié)教學(xué)為例。
⑴闡述實際意義,建立概念。黑板上畫兩個邊長差別很大的正方形,請學(xué)生用一三角板畫出它們的對角線(其中一個正方形的對角線長度小于三角板的邊長,另一個正方形的對角線長度大于三角板的邊長),小正方形的對角線容易畫出,但大正方形的對角線卻使 學(xué)生陷入困境,讓學(xué)生自己去選擇方法和探索認證,思考畫直線的理論依據(jù)除兩點確定一條直線外,還有由點與方向確定一定直線,這樣便自然產(chǎn)生了“直線的傾斜角”的概念,進而反思,討論用角和數(shù)進行運算的不便后,建立起斜率的概念
⑵揭示本質(zhì),理解概念。引進斜率概念后,針對關(guān)鍵詞進行分析,學(xué)生思考之余提出:“討論繞點(2,3)按逆時針方向旋轉(zhuǎn)一周的直線斜率變化情況如何?通過畫圖,利用運動的觀點解決問題,從而進一步認識了傾斜角和斜率的概念的聯(lián)系與區(qū)別及它們?nèi)≈捣秶妥兓厔?,通過建構(gòu)活動,同化或順應(yīng)于學(xué)生的認知結(jié)構(gòu)。
⑶深入分析比較,深化概念
斜率和傾斜角納入原有認知結(jié)構(gòu)后,提出問題:過點P(1,1),Q(2,3)的直線的傾斜角與斜率各是多少?鼓勵學(xué)生探索、創(chuàng)造建立兩個新的“解析成果”與最基本“解析成果”點的坐標(biāo)的關(guān)系,討論、概括學(xué)生的思路:
直線上兩點坐標(biāo)――――――直線斜率
正切值的坐標(biāo)表示――――――直線傾斜角
如此則形成了斜率坐標(biāo)公式的推導(dǎo)思路,通過重建充實了原認識結(jié)構(gòu)。
⑷加強應(yīng)用,鞏固概念。
選擇典型的循序漸進的題組進行鞏固,建立起相應(yīng)的應(yīng)用模式。如:
①直線過點(1,4),(3+1,1)其傾斜角和斜率各是多少?
②已知直線過點P(3,4),Q(-2-m,-m+5),當(dāng)m為何值時,直線與x軸平行?當(dāng)m為何值時,直線與y軸平行?當(dāng)m為何值時,其傾斜角為3π/4?
③已知點M(-4,7),N(2,15)若直線1傾斜角是直線MN的傾斜角的一半,則1的斜率為多少?
這樣學(xué)生在問題激發(fā)下主動建構(gòu),從形成概念、掌握本質(zhì),直至融概念于原認知結(jié)構(gòu)中,建立起新的認知結(jié)構(gòu),相對獨立地完成數(shù)學(xué)建構(gòu)活動,達到概念理解深刻、全面。
四、組織概念的系統(tǒng)化、整體化的過程。
數(shù)學(xué)中許多概念的理解和掌握不是一次可以完成的,教師應(yīng)有計劃地使學(xué)生不斷豐富和加深理解。可以通過單元復(fù)習(xí),階段復(fù)習(xí),甚至是垮學(xué)年地總結(jié)的方式使所學(xué)的有關(guān)概念系統(tǒng)化和整體化,組織學(xué)生概括、歸納,不斷豐富概念的內(nèi)涵和外延,充實認知結(jié)構(gòu)。
例關(guān)于“角”的概念的深化與系統(tǒng)化
⑴平面角:①一點出發(fā)的兩條射線所組成的圖形(靜態(tài)定義)②以一條射線的端點為頂點旋轉(zhuǎn)所形成的圖形,逆時針旋轉(zhuǎn)為正角,順時針為負角,不作旋轉(zhuǎn)為零角。
⑵異面直線所成的角:在空間任意取一點,分別引兩條異面直線的平行線所成的銳角或直角,叫做兩條異面直線的所成的角。
篇3
數(shù)學(xué)的抽象性賦予了概念的特殊性,數(shù)學(xué)概念的學(xué)習(xí)并不是其他學(xué)科學(xué)習(xí)所能夠比擬的,具體的數(shù)學(xué)思維形式在數(shù)學(xué)概念的學(xué)習(xí)中要不停地進行訓(xùn)練和強化,數(shù)學(xué)概念反映的是事物內(nèi)在的客觀規(guī)律,并借助一定的數(shù)學(xué)符號和數(shù)學(xué)形式化語言來對數(shù)學(xué)知識作出具體的表述,數(shù)學(xué)符號的冗繁復(fù)雜本身就具有高抽象度,不易被學(xué)者所理解,而數(shù)學(xué)概念要對此采用語言符號來描述,所以顯得難上加難,數(shù)學(xué)概念的描述自然也就生澀不易被理解.數(shù)學(xué)符號的意義,很多并不能夠用語言來作出具體闡述,因此在對數(shù)學(xué)符號做闡述時,要盡量具體明了,并著重強調(diào)數(shù)學(xué)符號的作用,數(shù)學(xué)符號的作用具體強調(diào)清楚后,才能在形式運算中,更好地理解數(shù)學(xué)概念所內(nèi)涵的意義,因此符號運算是數(shù)學(xué)概念的形式化特征.同時,數(shù)學(xué)概念也具有系統(tǒng)性,而且系統(tǒng)性很強.數(shù)學(xué)概念多是層層密切聯(lián)系,不能夠在學(xué)習(xí)的過程中厚此薄彼.因為數(shù)學(xué)概念之間的聯(lián)系直接而且廣泛,學(xué)生可以在學(xué)習(xí)數(shù)學(xué)基礎(chǔ)概念的時候就進行相應(yīng)的擴充,從而在學(xué)習(xí)此項概念的同時能夠延伸到下一概念,使得數(shù)學(xué)學(xué)科的知識面增大,并在逐步的學(xué)習(xí)中,對于數(shù)學(xué)概念的系統(tǒng)能夠深入淺出,并很好掌握.數(shù)學(xué)概念從古至今進行著不斷的發(fā)展和延伸的.所以在高中的數(shù)學(xué)概念學(xué)習(xí)中,就應(yīng)該提高學(xué)科知識的認識度,并關(guān)注學(xué)習(xí)的實際成效,高中數(shù)學(xué)概念的學(xué)習(xí)能夠為學(xué)生以后的學(xué)科學(xué)習(xí)奠定堅實基礎(chǔ),并對整個學(xué)科系統(tǒng)性掌握提供可靠的方法依據(jù).
二、高中數(shù)學(xué)概念教學(xué)的教學(xué)方式
1.創(chuàng)設(shè)情境教學(xué)
數(shù)學(xué)概念的抽象是對實際生活中事物的抽象,雖然在理解層面上較難被高中學(xué)生所接受,但是數(shù)學(xué)概念的學(xué)習(xí)與實際生活密切聯(lián)系,在高中數(shù)學(xué)教學(xué)中,具體的實驗?zāi)軌蛱岣邔W(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并在實驗中充分認知和理解概念的由來及抽象性.傳統(tǒng)的數(shù)學(xué)概念教學(xué),只是強調(diào)學(xué)生死記硬背,并未要求深入理解,而在具體的習(xí)題練習(xí)中,教師多采用增加練習(xí)量,加以模仿,熟能生巧后對問題的解決能力也就隨之提升.其實這一過程中,數(shù)學(xué)概念的理解還是沒有得到解決,不了解的仍然是不了解,了解的也多是練習(xí)中機械性解題方式.數(shù)學(xué)概念是一個不斷發(fā)展和完善的形式理論,所以學(xué)生在具體學(xué)習(xí)中應(yīng)該結(jié)合實際,并與學(xué)生或者老師多交流概念認識的心得.只有實踐與合作交流同時進行才能做到概念上的真正理解.因此,高中數(shù)學(xué)概念的具體教學(xué)中,教師應(yīng)該讓學(xué)生積極參與到概念教學(xué)的探究中,使學(xué)生和教師在共同的探究中,找出數(shù)學(xué)概念的由來,并大膽探究概念的未來走向,所以此過程中,學(xué)生的思維開拓離不開教師的正確引導(dǎo),學(xué)生學(xué)習(xí)數(shù)學(xué)概念離不開其主動參與和研究,更離不開具體實驗的動手能力.只有在概念教學(xué)中創(chuàng)造合時宜的情景教學(xué),才能讓學(xué)生對概念的理解提到另一個層面上來.
篇4
一、數(shù)學(xué)概念的本質(zhì)
初中數(shù)學(xué)教師的教學(xué)對象是十一二歲的孩子,要教他們學(xué)會并記住一個概念,就必須不僅自己要了解數(shù)學(xué)概念,還有讓學(xué)生也了解數(shù)學(xué)概念的本質(zhì)。數(shù)學(xué)概念是反映思考對象空間形式和數(shù)量關(guān)系本質(zhì)屬性的一種思維形式。數(shù)學(xué)概念是數(shù)學(xué)基礎(chǔ)知識體系的細胞,也是解答數(shù)學(xué)題是判斷、推理、論證或計算的根據(jù),理解和掌握好概念是學(xué)好數(shù)學(xué)的基礎(chǔ)。所以,學(xué)習(xí)概念必須準(zhǔn)確、清晰,不能有半點含糊。例如梯形這個數(shù)學(xué)概念,它具有方位、大小、形狀諸多方面的屬性,但我們只要抓住“四條邊”這一屬性,就可把它和其他多邊形區(qū)分開來。因此,“四條邊”、“只有一組對邊平行”就成了梯形這一概念的本質(zhì)屬性,而一旦把本質(zhì)屬性從眾多屬性中分離出來,學(xué)生的頭腦中自然就形成了“梯形”這個清晰的數(shù)學(xué)概念。
二、初中數(shù)學(xué)概念教學(xué)的現(xiàn)狀
新課改下的初中數(shù)學(xué)教材對概念的描述、概括不再是只注重其表達形式,而是注重新課標(biāo)強調(diào)的要“關(guān)注概念的實際背景與形成過程,幫助學(xué)生克服機械記憶的學(xué)習(xí)方式?!比欢?,盡管新課標(biāo)下的教學(xué)大綱強調(diào)了概念的重要性和基礎(chǔ)性,受應(yīng)試教育的影響,相當(dāng)一部分教師仍然采用傳統(tǒng)的教學(xué)模式來進行教學(xué),在教授過程中只是給出數(shù)學(xué)基本概念,引出相關(guān)的定理和性質(zhì),再講解例題。他們只重視概念的運用,不注重概念的形成過程,強行地將一些新的數(shù)學(xué)概念灌輸給學(xué)生,不重視數(shù)學(xué)知識的產(chǎn)生與形成階段,造成數(shù)學(xué)概念與解題脫節(jié)的現(xiàn)象。他們完全忽視了概念教學(xué)是初中數(shù)學(xué)學(xué)習(xí)中至關(guān)重要的一個環(huán)節(jié),是基礎(chǔ)知識和基本技能教學(xué)的核心這一點。
三、初中數(shù)學(xué)概念教學(xué)的實施策略
鑒于很多教師的教學(xué)觀念還較為陳舊,在教學(xué)中不重視學(xué)生的思維活動,影響學(xué)生在學(xué)習(xí)中形成正確的數(shù)學(xué)觀,新課改要求初中數(shù)學(xué)教師必須更新教學(xué)理念,真正重視數(shù)學(xué)概念的教學(xué)。這就需要教師根據(jù)學(xué)生基礎(chǔ)知識水平的特點,正確選擇適合學(xué)生身心發(fā)展和能力提升的教學(xué)方法來改進數(shù)學(xué)概念的教學(xué)。譬如創(chuàng)設(shè)情境,以激發(fā)學(xué)生的學(xué)習(xí)興趣;倡導(dǎo)學(xué)生自由探討,相互合作,以體現(xiàn)學(xué)生的主體地位,優(yōu)化學(xué)生的學(xué)習(xí)方式;引導(dǎo)學(xué)生重視概念的學(xué)習(xí),以提高應(yīng)用概念解決問題的能力等。
篇5
在造型藝術(shù)基礎(chǔ)教學(xué)中,“結(jié)構(gòu)”一詞出現(xiàn)的頻率相當(dāng)高,老師反復(fù)強調(diào),學(xué)生似懂非懂。上世紀(jì)90年代出現(xiàn)的“結(jié)構(gòu)素描”,就以一整套類似剖面圖的訓(xùn)練方式來明確表現(xiàn)結(jié)構(gòu)的存在。其實,“結(jié)構(gòu)”并不僅僅只存在于素描之中,色彩基礎(chǔ)和所有造型藝術(shù)形式及整個藝術(shù)創(chuàng)作過程中,都會涉及到結(jié)構(gòu)問題,結(jié)構(gòu)是一種普遍的存在。沒有合適的結(jié)構(gòu),就不會有明確的外在形式。
一、什么是結(jié)構(gòu)
“結(jié)構(gòu)”是一個組合詞,原本是指房屋建造或房屋式樣,后引申指事物各個部分的配合和組織??梢赃@樣說,凡是由多個部分組合在一起的整體,都可以稱為結(jié)構(gòu)。因此,按字面的簡單理解,“結(jié)構(gòu)”就是聯(lián)結(jié)在一起的構(gòu)件。
造型藝術(shù)各專業(yè)的課程設(shè)置,都是為培養(yǎng)專門人才服務(wù)的。課程是部分,是構(gòu)件,共同配合組成一個培養(yǎng)目標(biāo)的整體,這可以稱為專業(yè)教學(xué)結(jié)構(gòu)。每一件完整的藝術(shù)作品,也都有一個完整的有機結(jié)構(gòu)。因為每一件作品都是作者按照塑造形象和表現(xiàn)主題的需要,運用了相關(guān)的藝術(shù)表現(xiàn)手法,把一系列表現(xiàn)元素加以安排和組織的結(jié)果。比如一幅油畫作品的產(chǎn)生,就是作者運用了油畫的表現(xiàn)形式,將自己生活中的感受進行了可視的表達。這幅油畫包含了構(gòu)思、構(gòu)圖、造型、色彩等軟性構(gòu)件和畫框、畫布、顏料等硬性構(gòu)件,是這些構(gòu)件的有機聯(lián)結(jié),才構(gòu)成了一幅具有審美價值的油畫作品。這是廣義的結(jié)構(gòu)概念。
“結(jié)構(gòu)”在造型藝術(shù)特別是基礎(chǔ)教學(xué)中的一般含義是指形體結(jié)構(gòu),這也是本文所要論及的主要內(nèi)容。
形體結(jié)構(gòu)包括形體和結(jié)構(gòu)兩部分。形體是指物象的形狀、形貌、形態(tài)、體積以及所處的空間;結(jié)構(gòu)是指形體的內(nèi)在構(gòu)造。形體是外在的、顯性的、整體的,結(jié)構(gòu)是內(nèi)在的、隱性或半隱形的、部分的。外在形體與內(nèi)在結(jié)構(gòu)是統(tǒng)一的。造型藝術(shù)所探究的形體,是物象的外在特征,但又不忽視內(nèi)在結(jié)構(gòu)對整體的深刻影響。從這個意義上講,“結(jié)構(gòu)”更貼切一些的解釋應(yīng)該是:能感覺或觀察到內(nèi)在構(gòu)造的有機整體。
色是光的一種表現(xiàn)形式,由于光波的長短不同而產(chǎn)生出多種色。一般而言,色是附著于形之上的,而且在造型藝術(shù)基礎(chǔ)教學(xué)階段,色彩課的基本要求也是用色來造型。型,即形體,所以,把色彩也放在形體結(jié)構(gòu)之中來談?wù)摚坪醪o不妥。
二、空間結(jié)構(gòu)•解剖結(jié)構(gòu)•色彩結(jié)構(gòu)
自然狀態(tài)下的具體物象,都處在一定的空間之中。在人的視覺中,這些物象的形狀、體積和色彩都會因空間的存在而呈現(xiàn)出透視現(xiàn)象。透視知識是探究空間結(jié)構(gòu)的指導(dǎo)方法,不了解基本的透視原理,也就無法理解和表達空間結(jié)構(gòu)。近大遠小,近實遠虛是空間結(jié)構(gòu)存在的具體體現(xiàn),正確的透視方法能形成強烈的空間感和畫面效果。
構(gòu)圖布局探究的是物象在畫面中的空間安排,是畫面的骨架,也是構(gòu)成一幅作品的基本要素。直觀性構(gòu)圖以實景為基礎(chǔ),注重對物象作直接寫實的組合;主觀性構(gòu)圖重視作畫者的主觀感覺,注重對物象作變形處理或重新組合。
曾流行于西方的“立體派”繪畫,采用將物象的上下左右前后內(nèi)外全部平面展示的觀察方法,去探究多面積的物體結(jié)構(gòu)。后來出現(xiàn)的“結(jié)構(gòu)主義”流派,更將一切復(fù)雜的自然形體都概括為方形、三角行、圓形和線條等抽象符號,突出表現(xiàn)一種形式上的結(jié)構(gòu)關(guān)系。由于這些作品注重創(chuàng)造性,并有著強烈的圖案裝飾趣味,一直都受到現(xiàn)代設(shè)計藝術(shù)的重視,也為寫實藝術(shù)提供了一種認識結(jié)構(gòu)整體關(guān)系,立體地理解和表現(xiàn)物象結(jié)構(gòu)的參考方法。
解剖結(jié)構(gòu)泛指一切物象的內(nèi)部聯(lián)結(jié),而不單單指人體和其他生命體的生理結(jié)構(gòu)。
人體的生理結(jié)構(gòu)是最具復(fù)雜性和完美性的組合,畫人體的時候,僅僅滿足于一個空洞的外形是遠遠不夠的。即使是簡單幾筆線條組成的人體速寫,也要求把比例、動態(tài)、關(guān)節(jié)、骨骼及肌肉的起伏特征表現(xiàn)出來、而這些特征的突顯都是因解剖結(jié)構(gòu)決定的。一個自然站立的人體,其脊椎是呈“S”形的,脖子稍向前傾,雙腿也并非完全垂直向下。不了解這些,畫站立的人體就會顯得不自然、不生動,像機械而非有生命的人體。另外,人的運動不能脫離骨骼和肌肉的配合,向前彎曲的關(guān)節(jié),不能向后彎曲,反之也一樣。缺乏這些相關(guān)概念,就沒有辦法進行與人體相關(guān)的藝術(shù)造型和藝術(shù)設(shè)計活動。
熟悉了人體解剖結(jié)構(gòu),再去畫動物就要容易得多,因為人也是動物家族中的一員,許多解剖特征與其他動物有一致性或相似性,許多基本概念是相同的。相當(dāng)部分的人造物其外觀比例也都與人體相關(guān),因為人造物都是為方便人的使用而設(shè)計的。假若你想象一臺未來的器械或要重新設(shè)計一個物品的外觀,如果沒有對現(xiàn)成的器械或物品的參照,這個想象或設(shè)計恐怕很難得到今人的認可。同樣,風(fēng)景的描繪也離不開對自然、地理、氣候、植物等基本知識的認識和了解。器械是諸多零件的組合,物品外觀是諸多設(shè)計元素的組合,風(fēng)景則是諸多自然物象的組合,它們都含有廣義的解剖結(jié)構(gòu)。
素描能夠解決造型藝術(shù)中的光影、構(gòu)圖、線條、空間、形體、比例等一系列基礎(chǔ)而又本質(zhì)的問題,惟獨不包括色彩。這并不表明色彩不存在結(jié)構(gòu),只是因為素描是一種單色繪畫形式,無法涉及到更深層的色彩結(jié)構(gòu)。色彩是一種視覺現(xiàn)象,涉及到自然科學(xué)的多個學(xué)科。就目前對色彩的認識而言,除紅、黃、藍三原色為自然生成以外,一切色彩都是由這三原色衍生出來的。色彩結(jié)構(gòu)是指色彩現(xiàn)象中的色相、明度、純度、冷暖等諸元素的組織,配合和排列。研究色彩結(jié)構(gòu),是為了把握其變化規(guī)律及其對人的視覺產(chǎn)生的影響,以達到實際運用的目的。
三、結(jié)構(gòu)方法
結(jié)構(gòu)方法是認識事物的規(guī)律、性質(zhì)和功能的科學(xué)方法。瑞士語言學(xué)家索緒爾(FerdinanddeSaussure1857-1913)是結(jié)構(gòu)主義方法論的先驅(qū),他認為結(jié)構(gòu)方法有三大要點:①強調(diào)整體對部分的優(yōu)先性;②在研究中,可將對象分解成多個組成部分,然后重新組合,以引起整體性的變化;③對對象的研究不應(yīng)該停留在表面(表層結(jié)構(gòu)),而應(yīng)該深入到對象的內(nèi)在聯(lián)系(深層結(jié)構(gòu))。應(yīng)該說,這三點對造型藝術(shù)都具有指導(dǎo)意義。
(一)整體•部分
從整體出發(fā),是科學(xué)觀察的核心。按照作畫步驟,開始需要關(guān)注的就是整體、概貌、形狀、輪廓和空間位置,然后才有可能進行深入刻畫,最后還得依照整體優(yōu)先的原則,調(diào)整整體關(guān)系,不讓局部破壞了整體。
北宋文豪蘇軾深諳整體與部分的辨證關(guān)系,他在《題西林壁》一詩中寫道:“橫看成嶺側(cè)成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中?!北3忠欢ǖ木嚯x對廬山作全方位的觀察,就能看到峰巒的千變?nèi)f化和高遠深邃的整體面貌,而一旦進入其中,看到的可能只是草木土石而不見廬山了。作畫也是如此,缺乏整體觀念,就容易將眼光盯住一點而不便全面比較。比如畫一個花瓶,無論從哪各角度看,它兩邊的輪廓都應(yīng)該是對稱的,但許多初學(xué)者就注意不到這點,他們是看一邊畫一邊,結(jié)果自然是一邊大一邊小。再比如,要完成一張半身人像寫生作業(yè),首先應(yīng)該思考一下怎樣構(gòu)圖,頭部應(yīng)該畫多大才能把手也按要求畫進畫面、周圍的空間應(yīng)該留多少才能使布局合理。如果缺乏這一步驟,極有可能出現(xiàn)畫不下或空間過大的毛病。隨著這張作業(yè)的進行,還應(yīng)當(dāng)隨時注意觀察調(diào)整畫面人物的五官、頸、肩、胸、腹、臂、手的位置、比例、透視等關(guān)系。因為模特是活的,會動,不注意協(xié)調(diào),就會出現(xiàn)各部分各自為陣,缺乏統(tǒng)一標(biāo)準(zhǔn)的問題。另外,人體的左右兩半是基本對稱的,畫著這一半,就要比較另一半;人體的各部分是協(xié)調(diào)的,畫手的時候,也要顧及到頭,不然,等你發(fā)現(xiàn)畫面難看(比例失調(diào))的時候,就不好改動了。
為了不出現(xiàn)或少出現(xiàn)上述問題,在整體觀察的前提下進行具體的比較是不可少的。有比較才有鑒別,顧此失彼的作畫辦法應(yīng)當(dāng)丟棄。
這里順便提及一下什么是輪廓。所謂輪廓,不僅是指物象的外輪廓,還包括內(nèi)輪廓和負輪廓。外輪廓指物象的邊緣線,內(nèi)輪廓則指外輪廓圈內(nèi)的起伏形態(tài)。外輪廓與內(nèi)輪廓是相對的,從一個角度看是外輪廓,換一個角度則成了內(nèi)輪廓,反之亦然。負輪廓是指物象以外的輪廓線。任何物象置于一定空間,除了本身的輪廓外,其外緣也被“切割”成一個圍住該物象的輪廓,這個輪廓的邊線與外輪廓線是重合的。所以利用負輪廓也能檢查外輪廓是否準(zhǔn)確。輪廓是由物象本身的形體起伏決定的,而形體的起伏是由結(jié)構(gòu)決定的。不同的視角會引起物象輪廓的變化,但物象的內(nèi)在結(jié)構(gòu)是不變的。同樣,不同角度的光源,只會使物象呈現(xiàn)出不同的光影效果,而不會影響物象的結(jié)構(gòu)。
如何畫準(zhǔn)輪廓?首先需要對物象表面的各起伏點進行比較,找出其遠近高低前后左右的關(guān)系點,然后將這些點聯(lián)結(jié)起來,輪廓就不會錯得太遠。
如何處理明暗?首先對物象表面的明暗各處進行比較,找出明暗交界線,再比較一下最亮、次亮、次暗、最暗和反光的色度關(guān)系,大致的調(diào)子也就出來了。
如何處理色彩關(guān)系?首先對物象表面的色彩進行比較,確定一個基本色調(diào),然后按明度、純度、冷暖、面積等各種對比規(guī)律進行組織,總的色彩感覺也就有了。
其它如線條的疏密,邊緣的虛實,空間的前后等等,無一不是比較的結(jié)果。
比較的前提是整體觀念,沒有整體觀念就不會自覺地進行比較。
(二)分解•組合
搞發(fā)明創(chuàng)造的人有一個共同愛好:把某一件感興趣的器物拆開,待細細研究一番組成構(gòu)件和聯(lián)結(jié)方法之后再還原。如能恢復(fù)原件功能,表明成功了,否則就會反復(fù)折騰。進而他們會去研究相關(guān)的一類器物,并試圖將這些器物的部件打散重組,以形成新的器物。這個過程就是結(jié)構(gòu)主義方法論第二要點的實踐版。
造型藝術(shù)基礎(chǔ)訓(xùn)練的根本目的,不僅是能夠“照著葫蘆畫葫蘆”,還要能解釋為什么可以“照著葫蘆畫瓢”。明白了其中的道理,就能理解結(jié)構(gòu)和功能的相互關(guān)系,為以后的創(chuàng)作或設(shè)計作好思想認識上的準(zhǔn)備。
在基礎(chǔ)練習(xí)過程中,不管是靜物、風(fēng)景、人物、動物,都可以運用分解組合的法則將復(fù)雜的形體概括成簡單的幾何形體,如把人的頭部概括成一個圓球體、把頸部概括成圓柱體、軀干部分可以看成是一個方塊,而四肢則是粗細長短不同的圓柱或長方體的組合。這樣就能比較容易地理解人體因動態(tài)或觀察角度引起的透視變化,比較快的掌握人體各關(guān)節(jié)的運動規(guī)律。
“結(jié)構(gòu)素描”是一種強調(diào)結(jié)構(gòu)的表現(xiàn)性技法,它要求以理性的態(tài)度對物象多作分析,并描繪出物象的多維空間輪廓及內(nèi)在與外在的結(jié)構(gòu)轉(zhuǎn)換關(guān)系,是一種將物象分解并組合在一起的可視訓(xùn)練手段。
“色彩構(gòu)成”并不是一種繪畫風(fēng)格,它舍棄或弱化了物象表面的形體,空間和光影,并將現(xiàn)成的色彩印象打散而去探求其中的色彩組織關(guān)系,是色彩現(xiàn)象的分解與組合的訓(xùn)練手段。所以,有的教科書中也將色彩構(gòu)成稱為色彩結(jié)構(gòu)。
(三)表面•內(nèi)在
許多對繪畫不太了解的人都認為,繪畫水平的高低,在于能不能把對象畫像,好像畫得越肖似,手法越細膩水平也就越高。他們不知道“論畫以形似,見與兒童鄰;賦詩必此詩,定非知詩人”的道理。
許多初學(xué)畫者都認為,自己畫不好的主要原因是技巧不成熟,不會用筆,不懂用色。他們關(guān)心的是“怎么畫”,而不是“畫什么”。他們不知道,再熟練的用筆如果不表現(xiàn)對象的結(jié)構(gòu)本質(zhì)或不能體現(xiàn)繪畫的藝術(shù)本質(zhì),一切都是沒有意義的。
對于造型藝術(shù)基礎(chǔ)訓(xùn)練而言,把對象畫像是基本要求而不是目的。因為畫得像不像可以檢驗學(xué)畫者對對象的整體理解能力和表現(xiàn)能力的把握程度,如果連把握基本形象的能力都不具備,又怎么談得上認識形體結(jié)構(gòu)規(guī)律并進行創(chuàng)造性的運用呢?就像前面所舉的實例,沒有將拆開的器物還原的能力,又怎么能談得上重組呢?一切造型藝術(shù)形式的最終目的是貼切地表達作者的內(nèi)心感受,或者是根據(jù)要求設(shè)計出客戶滿意自己也滿意的產(chǎn)品,至于用什么方法表現(xiàn)是次要的。自己滿意、客戶滿意,你使用的方法就是好方法,否則只能留下遺憾。古人說:“無法之法,乃為至法”,是非常有道理的。
從理論上講,結(jié)構(gòu)系統(tǒng)除了具有整體性和功能性以外,還具有層次性。關(guān)于整體性前面已反復(fù)論及,而各種各樣的藝術(shù)表現(xiàn)形式其實就是結(jié)構(gòu)功能性的具體體現(xiàn),否則對結(jié)構(gòu)的研究就失去存在的意義了。結(jié)構(gòu)的層次性,是一個很值得探討的課題。形體結(jié)構(gòu),空間結(jié)構(gòu),解剖結(jié)構(gòu),如明暗的處理、線條的組織、筆墨的運用等,這些都是可視的、具體的,我們姑且可統(tǒng)稱為專業(yè)性結(jié)構(gòu)。除此以外,每個人的學(xué)識、修養(yǎng)、地位、經(jīng)濟能力等又能組成一個隱性的非專業(yè)性的結(jié)構(gòu)。非專業(yè)性結(jié)構(gòu)對專業(yè)性結(jié)構(gòu)能產(chǎn)生直接影響。課堂教學(xué),充其量只能讓學(xué)生領(lǐng)會專業(yè)性結(jié)構(gòu)中的一部分內(nèi)容,其余的則要靠勤想多畫,逐漸積累才能獲得。至于非專業(yè)性結(jié)構(gòu),就更要靠完全的自身修煉了。正所謂:“汝果欲學(xué)詩,工夫在詩外。”
①在形體結(jié)構(gòu)組織中,存在著幾個層次的子組織。這些子組織都可以構(gòu)成獨立的課目。如素描、色彩、解剖、透視、構(gòu)圖等。由這些子組織的共同作用,才能形成完整的形體塑造任務(wù)。
篇6
一、農(nóng)村中下層初中生數(shù)學(xué)學(xué)習(xí)主動性培養(yǎng)的概念解析
伴隨著基礎(chǔ)教育新課程改革的深入,突出教育教學(xué)過程中的學(xué)生參與性、激發(fā)他們學(xué)習(xí)的主動性已經(jīng)成為課堂改革的必然要求。著重突出學(xué)生在教育教學(xué)過程中的自覺性和主動探究性,這不僅僅是教育教學(xué)行為的變革,更是教育教學(xué)理念和思維的轉(zhuǎn)變。而學(xué)習(xí)主動性的培養(yǎng)重點就在于創(chuàng)設(shè)各種有利條件和機會,讓學(xué)生作為學(xué)習(xí)的主體去體驗知識,鍛煉能力,實現(xiàn)教育教學(xué)的三維目標(biāo)。
農(nóng)村中下層學(xué)生是指由于各種原因引起的,學(xué)習(xí)成績偏差的農(nóng)村學(xué)生,這些學(xué)生有的是可以通過一些方法能夠改善學(xué)習(xí)成績的。激發(fā)他們數(shù)學(xué)學(xué)習(xí)的主動性是教師根據(jù)他們的現(xiàn)有學(xué)情,認知特點和學(xué)習(xí)規(guī)律,通過創(chuàng)設(shè)現(xiàn)實的情境和機會,呈現(xiàn)或再現(xiàn)、還原數(shù)學(xué)的教學(xué)內(nèi)容,能讓學(xué)生自覺和積極的參與思考和學(xué)習(xí), 使學(xué)生在學(xué)習(xí)的過程中積極的理解并掌握文化知識、發(fā)展自身能力。
二、農(nóng)村中下層初中生數(shù)學(xué)學(xué)習(xí)主動性培養(yǎng)的意義探究
1、體現(xiàn)時代性的優(yōu)勢,培養(yǎng)了大批創(chuàng)新型人才
創(chuàng)新型人才就是不拘一格,各式各樣的人才觀,與此相適應(yīng),我國“《基礎(chǔ)教育課程改革綱要》指出,要轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式,就要改變課程實施過于強調(diào)接受學(xué)習(xí)、死記硬背、機械訓(xùn)練的現(xiàn)狀,倡導(dǎo)學(xué)生學(xué)習(xí)的自覺性和主動性,讓他們樂于探究、勤于動手,培養(yǎng)搜集和處理信息的能力、獲取新知識的能力、分析和解決問題的能力以及交流與合作的能力?!迸囵B(yǎng)學(xué)生的自主性和創(chuàng)造性意識。學(xué)生主動參與知識形成過程,自主探索,獨立思考,利用已有的認知結(jié)構(gòu),對外部信息進行主動性選擇、推斷,主動發(fā)現(xiàn)問題、分析問題,創(chuàng)造性地解決問題,成為知識的發(fā)現(xiàn)者與運用者,可以發(fā)展學(xué)生以創(chuàng)新精神和實踐能力為核心的素質(zhì),智力也會得到較好的發(fā)展。
2、把握規(guī)律性的優(yōu)勢,定位了教與學(xué)共同發(fā)展的結(jié)合點
學(xué)習(xí)主動性的培養(yǎng)是把握學(xué)生成長成才的規(guī)律,很好地改革教材和教學(xué)方法的體現(xiàn)。隨著教材改革的全面鋪開,初中數(shù)學(xué)課教材已經(jīng)實現(xiàn)了新舊轉(zhuǎn)型,教學(xué)方式也做了創(chuàng)新和改革,尤其是增加了學(xué)生參與活動的環(huán)節(jié),自主探究的環(huán)節(jié),如:“想一想”、“議一議”“說一說”、“閱讀天地”、“操作平臺”、“辯論會”等;初中數(shù)學(xué)課每一單元開頭都設(shè)置了“探究主題”(探究活動)來指導(dǎo)單元教學(xué),案例和活動也較多。總之這些變化都強化了過程性、體驗性目標(biāo)以期引導(dǎo)學(xué)生主動參與學(xué)習(xí)過程、培養(yǎng)自主合作探究、激發(fā)學(xué)習(xí)主動性等主體性精神,變革單一的記憶、接受、模仿的被動學(xué)習(xí)方式。
3、富有創(chuàng)造性的優(yōu)勢,提高了學(xué)生的社會品質(zhì)
在初中數(shù)學(xué)學(xué)習(xí)的過程中,激發(fā)學(xué)生學(xué)習(xí)的主動性可以培養(yǎng)學(xué)生良好的社會品質(zhì)。努力培養(yǎng)學(xué)生良好的社會品質(zhì)是教學(xué)義不容辭的責(zé)任。在學(xué)習(xí)中,突出學(xué)生主動性能力的培養(yǎng),讓學(xué)生成為學(xué)習(xí)的主體,自始自終充當(dāng)主人的角色,他們把教學(xué)看作是自己的責(zé)任,在活動中,能夠確立敢于負責(zé)的意識和精神。主動性的培養(yǎng)可以使學(xué)生在與教師、同學(xué)頻繁的交往中學(xué)會與人相處的藝術(shù),從而使自己具有一定的親他性。學(xué)生在積極主動的學(xué)習(xí)過程中,既能夠恰如其分地表現(xiàn)自己,又能使別人有表現(xiàn)的機會,共同的活動是人們交往的前提,學(xué)生在共同的活動中將學(xué)會如何與人相處、與人合作。
4、強化溝通的優(yōu)勢,有利于建立良好的師生關(guān)系
學(xué)生主動性的培養(yǎng),是讓學(xué)生成為學(xué)習(xí)的主角,我們知道,教師與學(xué)生之間彼此相倚,教師是教學(xué)活動的組織者、指導(dǎo)者,學(xué)生是自我發(fā)展的自主參與者,是積極的探索與創(chuàng)造者,師生之間是一種民主、平等、合作的交往關(guān)系。教師能夠創(chuàng)造條件滿足學(xué)生的參與愿望,學(xué)生就會有明顯的向師性。他們高昂的參與熱情會在一定程度上助長教師的教育熱情,一種更加強烈的情感或許由此產(chǎn)生。在學(xué)習(xí)中培養(yǎng)學(xué)生的主動性,可以增強學(xué)生與教師的交流與合作,學(xué)生的人格價值也會得到體現(xiàn)。在與教師的交流過程中,也會感受到教師對教育工作的責(zé)任感,對學(xué)生無私的關(guān)愛,從而增強對教師的理解與尊重,教師的人格價值也會在學(xué)生心目中得到升華。
5、活躍的課堂氣氛優(yōu)勢,有利于提高教學(xué)質(zhì)量
在學(xué)習(xí)中,培養(yǎng)學(xué)生的學(xué)習(xí)主動性會形成多邊的教學(xué)交流,這是課堂氣氛活躍的前提。學(xué)生主動性的培養(yǎng)有利于學(xué)生的需要(即表現(xiàn)的需要、求知的需要、發(fā)展的需要)得到滿足。通過參與,學(xué)生可以獲得表現(xiàn)的機會,他們學(xué)習(xí)的積極性會被調(diào)動起來,課堂上洋溢著的不只是教師的熱情。成功的體驗更有助于學(xué)生求知欲望的產(chǎn)生。輕松、活躍的學(xué)習(xí)氛圍,會讓師生雙方體會到教學(xué)是人生的一大樂事。學(xué)生在參與的過程中,將形成學(xué)習(xí)的自覺性、積極性,并不斷反思學(xué)習(xí)方法,從而獲得良好的學(xué)習(xí)效果。由此看來,教師應(yīng)根據(jù)教學(xué)的實際特點,提出行之有效的策略,讓學(xué)生在課堂上充分地發(fā)展,通過培養(yǎng)學(xué)生學(xué)習(xí)主動性實現(xiàn)教學(xué)過程整體的最優(yōu)化,提高教學(xué)質(zhì)量。
篇7
一、利用故事來設(shè)謎的教學(xué)藝術(shù)
在科學(xué)課堂上,如果有一位會講故事的老師,就很容易使得學(xué)生變成故事迷,使課堂氣氛愉快活潑,時而歌,時而笑,時而游戲,這才是寓教于樂的真正含義。就初中生的心理成熟程度而言,對于以故事的方式來講授科學(xué)知識,是比較受歡迎的,同時,從教育學(xué)的角度看,認為故事教學(xué)可使學(xué)生心情愉快、學(xué)習(xí)語言、涵養(yǎng)性情、增進知識、引起學(xué)生的想象、陶冶愛好、增進友誼、抑制惡感、培養(yǎng)表達能力和隨機應(yīng)變能力等,因此,利用故事的方式來設(shè)謎,是一個有效的方法。
1.教師在講故事時應(yīng)該注意遵循以下技巧
首先,自己要有濃厚的興趣,徹底了解故事的內(nèi)容以及科學(xué)知識的內(nèi)容,將兩者相結(jié)合,時刻記住以學(xué)生之心為核心,以故事中的人物為主而忘掉自我,全身心地投入到故事情節(jié)中,引學(xué)生入境。
其次,要有自然的姿勢與動作,用恰當(dāng)?shù)恼Z言和語調(diào),并要常常練習(xí),才能熟能生巧,教師要明確講故事的目的,不是為了故事而言說故事,而是要為了引起學(xué)生的疑問,設(shè)置一個科學(xué)謎團,在故事中設(shè)置問題,讓學(xué)生進行深入地思考,在學(xué)生腦海中構(gòu)建“為什么?”“怎么辦?”的思維圖像。
最后,講故事的環(huán)境(教師、學(xué)生以及一切之物)要注意:隨時隨地隨事都要留心,以引起學(xué)生愛聽故事的動機;教師講故事時,最好處于教室中間而非講臺,與學(xué)生的距離可以貼近一些,增加故事的真實感,同時也容易控制學(xué)生的注意力。
2.以故事來設(shè)謎的具體方法
教師在結(jié)合科學(xué)知識來講故事時,可以充分地利用初中生非常喜愛的《福爾摩斯探案記》中柯南道爾作為故事的主角,來編一個故事,引發(fā)學(xué)生的思考,例如,可以這樣來設(shè)置故事:
有一天晚上,柯南道爾被一陣陣刺耳的響聲吵醒,原來村莊里的人們敲著鑼打著鼓地在街上游行,經(jīng)打探得知,原來是在附近的一片墓地上,有村民在一個沒有星星,沒有月亮的晚上,在漆黑的夜里,看到墓地上那火光閃閃爍爍,明明滅滅,飄飄忽忽,于是“鬼火”的事在村里傳得飛飛揚揚,柯南道爾為了揭開這個謎底,開始了一系列的偵查活動。
教師將故事講到這里,就可以提問學(xué)生,究竟是怎么一回事,難道這世上真的有鬼的存在嗎?那鬼火究竟又是哪方神圣?這樣引人入勝的故事,就會充分地調(diào)動起學(xué)生的好奇心,引發(fā)他們?nèi)ニ伎歼@個謎團究竟是怎樣一回事,然后再導(dǎo)入新課,引導(dǎo)學(xué)生學(xué)習(xí)科學(xué)知識,《不點自燃的蠟燭》,給大家揭開謎底,動手一起去“探案”,同時,還可以利用實驗來證明最后的“探案”結(jié)論是否正確。教師先準(zhǔn)備好相應(yīng)的器材,然后取一支點燃過的蠟燭,固定在安全的地方(燭芯要長并且盡可能弄松散一些),接著在試劑瓶中加入5毫升左右的二硫化碳液體(注意它有很強的揮發(fā)性),再用鑷子夾取一塊黃豆大小的白磷放入二硫化碳中,塞上瓶蓋,輕輕搖晃,任白磷溶解在二硫化碳中形成溶液。最后用滴管取少量白磷的二硫化碳溶液,滴到燭芯上。接下來要耐心地等待片刻,就會看到神奇的現(xiàn)象出現(xiàn)了,不需要點燃,燭芯就自己燃燒起來了。原來,將白磷的二硫化碳溶液滴在蠟燭上以后,由于二硫化碳揮發(fā)快,在燭芯上就留下細小的白磷顆粒。白磷與空氣接觸,發(fā)生緩慢氧化逐漸積聚熱量,當(dāng)溫度達到白磷的著火點時。白磷便自燃將燭芯點著了,自然界中“鬼火”現(xiàn)象的原理與上述小實驗差不多。因為人或動物的骨骼中含有磷的成分,當(dāng)尸體腐爛后,有機物被分解,留下含磷的無機物,經(jīng)過一系列的變化,便產(chǎn)生了自燃現(xiàn)象。
二、利用日常生活中常見的現(xiàn)象來設(shè)置謎團
“習(xí)以為?!笔强茖W(xué)精神所要批評的對象,因此,要教會學(xué)生學(xué)會從平凡的事情中看出不平凡的科學(xué)知識來,就是我們進行初中科學(xué)素質(zhì)教育的核心任務(wù)。就如偉大的科學(xué)家牛頓從一個蘋果的落地,而引發(fā)了他的思考,從而發(fā)現(xiàn)了“萬有引力定律”,成為偉大的物理學(xué)家。在教學(xué)中,教師仍然要反思自己的教學(xué),是否做到啟發(fā)學(xué)生的“愛問為什么的”的習(xí)慣,從日常生活中發(fā)現(xiàn)科學(xué)的蹤影,發(fā)現(xiàn)科學(xué)的魅力無處不在。如在學(xué)習(xí)人與自然的關(guān)系時,要讓學(xué)生明白世間的生物與環(huán)境都是相互作用,相互影響的。在生物群落中,不僅各種生物之間是相互聯(lián)系、相互制約的,而且和它所在的環(huán)境之間也是相互聯(lián)系、相互制約的。生活在自然界中的生物會受到溫度、陽光、水分、食物等各種環(huán)境因素的影響,同時生物的生命活動也會影響環(huán)境。我們可以引導(dǎo)學(xué)生去觀察一下教室外面的花盆或者草坪上的土壤,為什么土壤上會有一些小小的孔洞?這是誰造成的?為什么會這樣?然后,教師在提出一系列問題后,才開始為學(xué)生解開謎底,原來是蚯蚓在土壤中活動,可以使土壤疏松,同時排出物還能增加土壤的肥力,促進植物的生長。
生物不斷進化,以適應(yīng)環(huán)境?,F(xiàn)存的每一種生物都具有與其生活環(huán)境相適應(yīng)的形態(tài)結(jié)構(gòu)和生活方式。如仙人掌能耐受長期的干旱,適應(yīng)沙漠環(huán)境;哺乳動物發(fā)達的四肢,適應(yīng)在陸上行走或奔跑……生物對所棲息的環(huán)境具有普遍的適應(yīng)性。教師還可以充分地利用多媒體來配合教學(xué),給同學(xué)們播放《動物世界》等優(yōu)秀的影片,在觀看時,要提醒學(xué)生觀察為什么這種生物會有這樣的特性?觀察他們是如何對自身生存而進行保護的?接著再介紹關(guān)于生物與環(huán)境之間的科學(xué)知識,如保護色,就是動物適應(yīng)棲息環(huán)境而具有的與環(huán)境色彩相似的體色。具有保護色的動物,不易被天敵發(fā)現(xiàn),對御敵和捕食有利。擬態(tài),就是某些生物的外表形狀或色澤斑,與其他生物或非生物異常地相似的現(xiàn)象。擬態(tài)可以以假亂真,難以被其他生物發(fā)現(xiàn),有利于動物的捕食或御敵。另外,還要結(jié)合當(dāng)前的全球氣候情況,跟學(xué)生共同研究探討人類該如何與自然環(huán)境和諧相處,創(chuàng)造共贏,引導(dǎo)學(xué)生從課內(nèi)走向課外,關(guān)注社會,關(guān)注自然,學(xué)會思考和解答問題,從而達到素質(zhì)教育中全面提高學(xué)生綜合素質(zhì)的目的。
三、結(jié)束語
初中科學(xué)是一門極富思辨色彩的學(xué)科,教師在教學(xué)過程中,不僅要教會學(xué)生如何去學(xué)習(xí)科學(xué)知識,還要通過課堂的設(shè)謎教學(xué)藝術(shù),提高學(xué)生對科學(xué)知識的興趣,發(fā)揮其探求科學(xué)殿堂的主動性和積極性。
參考文獻:
篇8
在傳統(tǒng)教學(xué)中,學(xué)生被束縛在教師教案的圈子里,其創(chuàng)造性受到一定的扼制。只有大膽發(fā)問,才能把被動接受知識轉(zhuǎn)化為主動探索。在一次的教學(xué)中,我問學(xué)生,你們能運用所學(xué)的數(shù)學(xué)知識計算超市中優(yōu)惠活動的價格嗎?比如,某超市推出以下優(yōu)惠方案:(1)一次性購物不超過100元不享受優(yōu)惠;(2)一次性購物超過100元但不超過300元一律九折;(3)一次性購物超過300元一律八折。小明兩次購物分別付款80元和252元。如果他將這兩次所購物品并在一次購買,應(yīng)付款多少元?
很快就有學(xué)生舉手了,她認為小明第二次付款252元時,所購物品價值是252÷0.9=280元,也就是享受九折優(yōu)惠后的付款數(shù),所以小明一次性購買全部商品應(yīng)付款是:(80+280)×0.8=288元。大多數(shù)學(xué)生也都認可這樣的計算結(jié)果??墒且粫?,又有學(xué)生提出了不同的意見,他認為小明第二次付款252元時,所購物品價值可能是252÷0.8=315元,享受八折優(yōu)惠后的付款數(shù),所以小明一次性購買全部商品應(yīng)付款是:(80+315)×0.8=316元。
學(xué)生把他們各自的方法計算完后,甚至提出了第一次購物也有可能是打完八折或九折后的金額,開始在草稿紙上計算起來,課堂氣氛變得很活躍,學(xué)生完全沉浸在發(fā)現(xiàn)的愉悅之中,這種充滿活力的教學(xué)可以讓學(xué)生愛上數(shù)學(xué)、愛上思考。
2.合作完成學(xué)習(xí)任務(wù),明晰數(shù)學(xué)概念內(nèi)涵
概念的形成是一個循序漸進的過程,數(shù)學(xué)概念不是靠教師講出來的,它應(yīng)該是由學(xué)生通過學(xué)習(xí)和體驗自己感悟出來。為了讓學(xué)生能夠在短時間內(nèi)了解數(shù)學(xué)概念,我決定采用小組討論的模式讓學(xué)生體驗團隊合作的價值。比如,我出了一個類似數(shù)獨的問題讓學(xué)生比賽,看哪個小組最先算出結(jié)果:
如下圖所示的9個方塊中,每行、每列以及每條對角線上三個數(shù)字和相等,求N的數(shù)值。
有一個小組很快就舉手了,我非常驚訝他們的速度,組長代表大家到黑板上寫下答案,并說他們是兩人一組分別驗算橫豎兩列,并把答案交給其他兩人分別用答案驗算中間的數(shù)字,然后再一起算出N的數(shù)值。例如,圖中第1列三個方格內(nèi)數(shù)字的和是-6,根據(jù)題意,第2行中間一格的數(shù)字應(yīng)是-6-(-4)=-2,同理,第3行左起第3格數(shù)字應(yīng)是-5,這時第3行中間一格的數(shù)字應(yīng)是2,所以N的數(shù)值就是-6。
二、學(xué)會自主評價深化對數(shù)學(xué)概念的理解
篇9
一、初中生記憶數(shù)學(xué)概念存在的問題
筆者根據(jù)多年的初中數(shù)學(xué)一線教學(xué)經(jīng)驗總結(jié)出,學(xué)生作為教學(xué)的主體在學(xué)習(xí)數(shù)學(xué)基本概念的過程中,主要呈現(xiàn)出以下三個層面的問題,值得深思和深入研究。
1.缺乏針對數(shù)學(xué)概念記憶的策略性知識。我國是一個教育歷史悠久、教育經(jīng)驗豐富的國家,特別是在“記憶學(xué)”的研究與應(yīng)用上取得了較好的成就,這在“應(yīng)試教育”教育階段發(fā)揮了一定的作用。隨著素質(zhì)教育、創(chuàng)新教育理念的提出,數(shù)學(xué)“記憶型”教學(xué)突然在理論上被界定為“數(shù)學(xué)應(yīng)試教育”的代名詞。這樣一來,向來受到重視的“數(shù)學(xué)三基”數(shù)學(xué)理論研究失去了往日的光彩,同時,理解型學(xué)習(xí)數(shù)學(xué)知識、創(chuàng)造性解決數(shù)學(xué)問題,最終培養(yǎng)學(xué)生的創(chuàng)新能力一越成為當(dāng)前素質(zhì)教育、創(chuàng)新教育培養(yǎng)目標(biāo)的內(nèi)核與教育界理論研究的熱點。這意味著前者已經(jīng)成為初中數(shù)學(xué)教學(xué)視閾的一個“真空地帶”??蓮奈覈鴶?shù)學(xué)教育教學(xué)規(guī)律可以看出,“記憶型”教學(xué)是初中數(shù)學(xué)學(xué)習(xí)必不可少且占有重要地位的方法論。因此,不能因為素質(zhì)教育的倡導(dǎo)就徹底否定了記憶教學(xué)的價值,或者說割裂了記憶與創(chuàng)新教育的必然聯(lián)系。
在如今初中數(shù)學(xué)教學(xué)過程中,很多教師片面理解創(chuàng)新教育理念,刻意講求創(chuàng)新方法,無形中把必要的數(shù)學(xué)知識記憶完全拋給了還處于記憶懵懂階段的初中生。而他們不但沒有記憶的感性認識,而且在記憶策略層面完全是一片空白,更何況高難度的抽象性數(shù)學(xué)知識記憶呢?每個教育者想必都知道,初中生如果在這種完全沒有指導(dǎo)性的碰壁式條件下記憶數(shù)學(xué)知識的話,最終結(jié)果只能是徘徊在記憶的原始階段“機械記憶”。這對于依靠理解性學(xué)習(xí)的數(shù)學(xué)來說是一個致命性節(jié)點。那些基礎(chǔ)好、主動性強的學(xué)生會在以后逐步的應(yīng)用中,慢慢地“反芻”大腦中的數(shù)學(xué)知識;而那些基礎(chǔ)不好、主動性差的學(xué)生則極有可能永遠在數(shù)學(xué)的迷宮里徘徊不前??梢?,在肯定和大力倡導(dǎo)創(chuàng)新教育的大環(huán)境、大背景下,探討記憶與創(chuàng)新的結(jié)合策略,充分發(fā)揮記憶的強大優(yōu)勢,科學(xué)推進初中數(shù)學(xué)的創(chuàng)新教育是一個必要而緊迫性的課題。
2.缺乏權(quán)衡記憶與理解的關(guān)聯(lián)意識。在"應(yīng)試教育"階段,大部分初中數(shù)學(xué)教師只顧及數(shù)學(xué)知識傳授的量的積累與擴充,從而忽視了學(xué)生學(xué)習(xí)知識質(zhì)的積淀與提高;只強調(diào)向?qū)W生“填塞”數(shù)學(xué)知識,從而忽視了“填塞”的方法論要求。這一階段實質(zhì)上是記憶完全占據(jù)統(tǒng)治地位的階段。而在建構(gòu)主義學(xué)習(xí)理論的作用下,許多數(shù)學(xué)研究者有這樣一個共識:數(shù)學(xué)知識的抽象性和概括性決定了數(shù)學(xué)知識的學(xué)習(xí)必須有學(xué)生自己理解過程的參與。此觀點后來不斷被強化,以致于在上世紀(jì)90年代中期,初中數(shù)學(xué)教學(xué)實踐走向了一個與前者完全相反的極端,即理解完全占據(jù)同志地位的階段。但經(jīng)過艱辛的理論探索后,一條數(shù)學(xué)教學(xué)科學(xué)規(guī)律終于得到廣泛的認可:數(shù)學(xué)知識的記憶和理解應(yīng)該是一個相輔相成的動態(tài)化過程。記憶與理解的最佳結(jié)合點在于尋求恰好的“平衡支點”。初中生只有站在這個“平衡支點”上,才能在真正意義上掌握數(shù)學(xué)概念,并逐步勾勒自己的數(shù)學(xué)知識結(jié)構(gòu)網(wǎng)。現(xiàn)在,問題的主旨在于如何幫助初中生建立權(quán)衡記憶與理解的關(guān)聯(lián)意識,尋找到這個最佳“平衡支點”。
3.缺乏系統(tǒng)性數(shù)學(xué)概念梳理意識。記憶學(xué)顯示:有效的數(shù)學(xué)概念記憶的結(jié)果應(yīng)該是使數(shù)學(xué)概念在大腦中以網(wǎng)絡(luò)鏈接模式有機組合的。初中生的數(shù)學(xué)知識結(jié)構(gòu)只有也只能以這種模式存在,才能更加利于以后知識的擇取與應(yīng)用。建構(gòu)主義學(xué)習(xí)理論同樣顯示:只有學(xué)生自身經(jīng)過同化和順應(yīng)作用形成的知識結(jié)構(gòu)才具有基礎(chǔ)性、可辨性、適用性的品質(zhì)。數(shù)學(xué)理論的邏輯體系更是決定了數(shù)學(xué)概念應(yīng)該是一系列概念環(huán)節(jié)互為相扣的鏈條有機體系。但是,初中生特別是那些在數(shù)學(xué)迷宮里徘徊不前的學(xué)生,長時記憶體系中的數(shù)學(xué)概念卻是孤立的、散亂的。造成這種局面的原因除了學(xué)生沒有有效地講求記憶策略和沒有處理好數(shù)學(xué)概念理解與記憶的關(guān)系外,主要是學(xué)生沒有整體意識,沒有從宏觀上梳理所記住的數(shù)學(xué)概念,更沒有理清數(shù)學(xué)概念間的聯(lián)系。其實,即使在教改后的現(xiàn)在正在應(yīng)用的數(shù)學(xué)教科書里,很多基礎(chǔ)練習(xí)都是針對一個或幾個具體的概念而設(shè)計的,并沒有為學(xué)生提供從整體上去理解和把握節(jié)、章,甚至是一冊數(shù)學(xué)教材中的概念關(guān)系的練習(xí)。
二、初中生記憶數(shù)學(xué)概念的對策選擇
篇10
“數(shù)系的擴充和復(fù)數(shù)的概念”是蘇教版高中數(shù)學(xué)選修12第3章第1節(jié)內(nèi)容,這節(jié)課的主要內(nèi)容是
:數(shù)系的擴充、復(fù)數(shù)的引入以及復(fù)數(shù)的有關(guān)概念。其中,數(shù)系的擴充,體現(xiàn)了數(shù)的發(fā)現(xiàn)和創(chuàng)造的過程,同時也體現(xiàn)了數(shù)的發(fā)展的客觀需求和現(xiàn)實背景;而復(fù)數(shù)的引入,則是中學(xué)階段數(shù)系的又一次也是最后一次擴充。對于高中生來說,學(xué)習(xí)一些復(fù)數(shù)的基礎(chǔ)知識是十分必要的,這可以促使
他們對數(shù)的概念有一個初步的、較為完整的認識,也給他們運用數(shù)學(xué)知識解決問題增添了新的工具,同時還為他們進一步學(xué)習(xí)高等數(shù)學(xué)打下了一定的基礎(chǔ)。
這節(jié)課的教學(xué)目標(biāo)是:(1)了解數(shù)系擴充的過程,理解復(fù)數(shù)的基本概念,掌握復(fù)數(shù)相等的充要條件。(2)通過對
復(fù)數(shù)概念的學(xué)習(xí),提高認知能力,在復(fù)數(shù)分類的研究過程中感悟分類討論思想,在復(fù)數(shù)相等充要條件的運用過程中感悟轉(zhuǎn)化化歸思想。(3)拓展數(shù)學(xué)視野,逐步認識到數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值。這節(jié)課教學(xué)重點是:數(shù)系擴充的過程和方法,虛數(shù)單位i,復(fù)數(shù)的概念,復(fù)數(shù)的分類(實數(shù)、虛數(shù)、純虛數(shù))和復(fù)數(shù)相等的充要條件。
學(xué)生學(xué)習(xí)這一節(jié)內(nèi)容,可能存在如下障礙:(1)對復(fù)數(shù)的理解。(2)對復(fù)數(shù)引入的實際意義、實際應(yīng)用的理解。(3)對復(fù)數(shù)相等的充要條件的理解。因此,在復(fù)數(shù)概念的講解中,應(yīng)盡量以簡單明白、深入淺出的分析為主;在引入復(fù)數(shù)后,應(yīng)花一些時間對復(fù)數(shù)的實際意義、實際應(yīng)用加以解釋。
二、教學(xué)環(huán)節(jié)的設(shè)計
(一)“問題引入”環(huán)節(jié)
對于新課引入,我采用開門見山的方式,直接拋出問題情境:“請大家一起找找這樣的兩個數(shù):把10分成兩部分,使二者乘積為40?!币源私o整節(jié)課定下了一條“發(fā)現(xiàn)問題—解決問題”的主線。
在解決該問題的過程中,引導(dǎo)學(xué)生回顧數(shù)的發(fā)展史,尤其是無理數(shù)的發(fā)現(xiàn)、實數(shù)集的擴充史,啟發(fā)學(xué)生得到結(jié)論:(1)數(shù)是因為不夠用而產(chǎn)生的。(2)為了區(qū)分新的數(shù)與原有的數(shù),通常會引入新的數(shù)學(xué)符號。
這樣,通過對特殊問題的思考,激發(fā)學(xué)生的探索興趣;通過對相關(guān)歷史的了解,啟發(fā)學(xué)生得到解決問題的方法,即只要約定-1的平方根,其他負數(shù)的平方根便可迎刃而解。由此,順利地引入新課。
(二)“新知構(gòu)建”環(huán)節(jié)
此環(huán)節(jié),主要講解復(fù)數(shù)的概念,重點關(guān)注復(fù)數(shù)的形式,認識數(shù)都是從形式開始的;突出復(fù)數(shù)由實部與虛部構(gòu)成,而“i”是虛數(shù)單位,也就是我們常說的“虛部不虛”。學(xué)生對于復(fù)數(shù)概念的易錯點,就在于虛部的概念,所以這個知識點要著重強調(diào)。
(三)“例題講解”環(huán)節(jié)
教材中例1的設(shè)計是為了加強對概念的理解,我對之進行了“加工”,在課堂上呈現(xiàn)給學(xué)生的例1是:“請寫出一個你認為的復(fù)數(shù),并指出其實部和虛部。”它看似樸實,卻是我設(shè)計的一個亮點,它打破了常規(guī)的例題設(shè)計,極具開放性:一方面,讓學(xué)生自主總結(jié)復(fù)數(shù)的形式;另一方面,通過追問“除之前同學(xué)寫的復(fù)數(shù),還有沒有不同形式的復(fù)數(shù)存在?若有,請舉例說明”,讓學(xué)生自己發(fā)現(xiàn)復(fù)數(shù)的不同類型。這是一個自主探究的過程,意在讓學(xué)生自己對復(fù)數(shù)進行歸類,起到承上啟下的作用。由此,復(fù)數(shù)的分類基本由學(xué)生自主歸納,凸顯了學(xué)生的主體性。
緊接其后,我設(shè)計了兩個診斷練習(xí):
1.復(fù)數(shù)a+bi(a,b∈R)是實數(shù)的充要條件是______;是虛數(shù)的充要條件是______;是純虛數(shù)的充要條件是______。
2.判斷下列命題是否正確:
(1)若a,b為實數(shù),則z=a+bi為虛數(shù)。
(2)若b為實數(shù),則z=bi為純虛數(shù)。
(3)若b=0,則z=a+bi為實數(shù)。
這兩個診斷練習(xí)的作用,在于加深學(xué)生對復(fù)數(shù)的概念及分類的理解,起到及時復(fù)習(xí)鞏固的效果。
然后,我呈現(xiàn)教材中的例2:“實數(shù)m取什么值時,復(fù)數(shù)z=m(m-1)+(m-1)i是:(1)實數(shù)?(2)虛數(shù)?(3)純虛數(shù)?”它的設(shè)計,目的主要是通過教師的規(guī)范板書,強調(diào)解題規(guī)范的重要性,培養(yǎng)學(xué)生的良好學(xué)習(xí)習(xí)慣。其實,解題的規(guī)范性,也是學(xué)生邏輯思維清晰的體現(xiàn)。
例2之后,我設(shè)計了一個追問:“a=0是復(fù)數(shù)z=a+bi(a,b∈R)為純虛數(shù)的充分條件嗎?”一方面,鞏固易錯知識點——純虛數(shù)的概念;另一方面,起到過渡的作用,從而流暢地引出如下3個變式:
變式2已知復(fù)數(shù)z=a2+2ai(a∈R)的實部是虛部的2倍,求a的值。
變式3若復(fù)數(shù)z=a2+2ai=16+8i(a∈R),則a的值為。
這3個變式,是為學(xué)生提供上黑板展示的機會——通過學(xué)生的板書,教師掌握學(xué)生的理解程度,對一些典型錯誤進行糾正,并且鞏固說明:根據(jù)復(fù)數(shù)的分類,抓住復(fù)數(shù)的實部和虛部來列式。
接著,我呈現(xiàn)教材中的例3:“已知(x+y)+(x-2y)i=
(2x-5)+(3x+y)i,
求實數(shù)x,y的值?!痹擃}的作用,是帶領(lǐng)學(xué)生總結(jié)處理復(fù)數(shù)相等問題的方法:轉(zhuǎn)化為求方程組解的問題,即復(fù)數(shù)問題實數(shù)化,以此彰顯數(shù)學(xué)思想應(yīng)用的重要性。
(四)“課堂小結(jié)”環(huán)節(jié)
課堂小結(jié),是整節(jié)課的一個升華。有的教師只是把它當(dāng)作一種形式,而我的做法是:先由學(xué)生來歸納總結(jié),再由教師著重引導(dǎo)學(xué)生,將所學(xué)內(nèi)容升華到數(shù)學(xué)思想,應(yīng)用數(shù)學(xué)思想解決數(shù)學(xué)問題。
三、課后反思
這是一節(jié)典型的概念課,如果是單純的講解或介紹,會讓學(xué)生感覺枯燥無味;而我通過拋出問題、解決問題,通過對數(shù)的發(fā)展歷史的回顧,較好地完成了對數(shù)的概念的擴展。
(一)激發(fā)興趣,明確目標(biāo)
本節(jié)課,我開門見山地設(shè)疑,從一個有關(guān)一元二次方程的簡單應(yīng)用題入手。因為學(xué)生對一元二次方程有較好的理解,而從熟悉的問題入手,學(xué)生不覺突兀,并且都能自主動手嘗試解決問題——讓學(xué)生動起來,是激發(fā)興趣的第一步。而緊接著學(xué)生會遇到困難——在實數(shù)范圍內(nèi)無法解決這一問題,像這樣的方程又比比皆是。學(xué)生有疑惑就會有好奇心,此時,適當(dāng)介紹數(shù)的發(fā)展史,尤其是無理數(shù)的發(fā)現(xiàn)與應(yīng)用。學(xué)生從無理數(shù)的發(fā)現(xiàn)與應(yīng)用的歷史中得到啟示,并且進入思考的狀態(tài),進而明確這節(jié)課的目標(biāo):需要引入一個新數(shù),一個新的符號。
(二)自主歸納,學(xué)有所獲
在“例題講解”環(huán)節(jié),開放性的例1的設(shè)計,目的有二:其一,從學(xué)生的嘗試中了解他們對概念的掌握程度,并由此進一步解釋概念,使學(xué)生對概念的解讀更清晰。實際教學(xué)中,學(xué)生一開始說的全是虛數(shù),而不敢舉實數(shù)的例子,說明學(xué)生把虛數(shù)就當(dāng)作復(fù)數(shù),概念并不清晰。此時及時對概念進行鞏固,可以加深學(xué)生的印象。其二,引導(dǎo)學(xué)生自主對復(fù)數(shù)進行分類。
變式的設(shè)置,真正起到了承上啟下的作用。變式1、變式2是對例2的補充,學(xué)生通過兩個變式的訓(xùn)練,進一步掌握了復(fù)數(shù)分類的依據(jù);變式2與變式3之間的微妙關(guān)系,則幫助學(xué)生很輕松地得出了兩個復(fù)數(shù)相等的充要條件。
篇11
1、使用《關(guān)于初中幾何問題教學(xué)現(xiàn)狀的調(diào)查問卷》、《關(guān)于初中生對幾何學(xué)習(xí)興趣的調(diào)查問卷》,了解學(xué)生對幾何概念課的感受。
2、通過訪談了解教師對“問題鏈”在初中幾何教學(xué)中的使用現(xiàn)狀的認識。
第二步:
從幾何概念課的教學(xué)實際出發(fā),本研究將“問題鏈”分為以下幾種類型:
1、概念引入“問題鏈”,是教師為引入課題所創(chuàng)設(shè)的情境,是為了使知識間平滑轉(zhuǎn)接,為后續(xù)教學(xué)埋下伏筆,使學(xué)生產(chǎn)生強烈的求知欲等目的而精心設(shè)置的一系列問題。
2、概念形成“問題鏈”,是教師為幫助學(xué)生體驗發(fā)現(xiàn)新知識的本質(zhì)屬性或規(guī)律的過程,基于已有經(jīng)驗得到新經(jīng)驗等目的而精心設(shè)置的一系列問題。
3、概念鞏固“問題鏈”,是教師為幫助學(xué)生鞏固新學(xué)的概念,避免與其他概念發(fā)生混淆,開擴學(xué)生思維的廣度,加深理解概念等目的而精心設(shè)置的一系列問題。
本研究將“問題鏈”的設(shè)計方式分為以下幾種類型:
1、階梯遞進式“問題鏈”,要求教師把教學(xué)內(nèi)容設(shè)計成不同梯度、不同層次的問題組,讓學(xué)生通過一個個問題的解決將難題迎刃而解。所提問題難度由淺入深、由簡單到復(fù)雜、由點到面,每一個問題的提出都有明確的目的,是后一個問題的鋪墊,是學(xué)生解決下一個問題的階梯。
2、類比遷移式“問題鏈”,是根據(jù)兩個對象之間在某些方面的相同或相似,從而推出它們在其它方面也可能相同或相似。
3、變式探究式“問題鏈”,注重以知識變式為抓手,讓學(xué)生在轉(zhuǎn)化中進入“最近發(fā)展區(qū)”,提高思維能力,提升思維層次。
4、總結(jié)歸納式“問題鏈”,總結(jié)鏈?zhǔn)墙處熢谶M行課堂教學(xué)、單元小結(jié)或復(fù)習(xí)時,為喚起學(xué)生的知識回憶,幫助學(xué)生建立系統(tǒng)知識結(jié)構(gòu)網(wǎng)絡(luò)而設(shè)計的“問題鏈”。
希望工作坊的成員們以年級為單位,按照下表梳理出的概念課的范圍,從概念引入、形成、鞏固三種類型問題鏈中選擇一到兩種,完成相應(yīng)的教學(xué)案例寫作。
年級
內(nèi)容
人員安排
六年級上
圓周、圓弧、扇形等概念
李亞瓊
六年級下
線段相等、角相等、線段的中點、角的平分線、余角、補角的概念
七年級上
圖形平移、旋轉(zhuǎn)、翻折的有關(guān)概念
軸對稱、中心對稱的有關(guān)概念
周曉旭、金少珍
七年級下
平面直角坐標(biāo)系的有關(guān)概念
相交直線的有關(guān)概念
同位角、內(nèi)錯角、同旁內(nèi)角的概念
三角形的有關(guān)概念
全等形、全等三角形的有關(guān)概念
八年級上
命題、定理、證明、逆命題、逆定理的有關(guān)概念
沈安晴、程小婷
八年級下
多邊形及其有關(guān)概念
平行四邊形(包括矩形、菱形、正方形)的概念
梯形的有關(guān)概念
向量的有關(guān)概念
九年級上
相似形的概念
比例線段相關(guān)概念、黃金分割、三角形的重心
相似三角形的概念
銳角三角比(銳角的正弦、余弦、正切、余切)的概念
金偉杰、于曉玲
九年級下
圓有關(guān)的概念
圓心角、弦、弦心距的有關(guān)概念
點與圓、直線與圓、圓與圓的位置關(guān)系中的相關(guān)概念
正多邊形的有關(guān)概念
注:上表是通過閱讀上海教育出版社《九年義務(wù)教育課本數(shù)學(xué)》六—九年級課本,根據(jù)《2020年上海市初中數(shù)學(xué)課程終結(jié)性評價指南》里規(guī)定的圖形與幾何部分,梳理出初中階段幾何概念課的教學(xué)內(nèi)容。
第三步:
從完成的教學(xué)案例中選一到兩個比較優(yōu)秀的案例,開展實驗研究。
前測:在授課前,學(xué)生在自行預(yù)習(xí)的基礎(chǔ)上完成一份有關(guān)本節(jié)課概念的試題,記錄其中概念題目的成績。在授課后,學(xué)生再次完成上一張試題,記錄其中概念題目的成績。將兩次成績的差值作為本實驗的前測。
后測:在授課前,學(xué)生在自行預(yù)習(xí)的基礎(chǔ)上完成前測使用的試題,記錄其中概念題目的成績。第一次授課后,將問題鏈進行改進,進行再一次授課。在授課后,學(xué)生再次完成上一張試題,記錄其中概念題目的成績。將兩次成績的差值作為本實驗的后測。
篇12
初一的四則運算是源于小學(xué)數(shù)學(xué)的非負有理數(shù)運算而發(fā)展到有理數(shù)的運算,不僅要計算絕對值,還要首先確定運算符號,這一點學(xué)生開始很不適應(yīng)。在負數(shù)的“參算”下往往出現(xiàn)計算上的錯誤,有理數(shù)的混合運算結(jié)果的準(zhǔn)確率較低,所以,特別需要加強練習(xí)。
另外,對于運算結(jié)果來說,計算的結(jié)果也不再像小學(xué)那樣唯一了。如|a|,其結(jié)果就應(yīng)分三種情況討論。這一變化,對于初一學(xué)生來說是比較難接受的,代數(shù)式的運算對他們而言是個全新的問題,要正確解決這一難點,必須非常注重,要使學(xué)生在正確理解有理數(shù)概念的基礎(chǔ)上,掌握有理數(shù)的運算法則。對運算法則理解越深,運算才能掌握得越好。但是,初一學(xué)生的數(shù)學(xué)基礎(chǔ)尚不能透徹理解這些運算法則,所以在處理上要注意設(shè)置適當(dāng)?shù)奶荻?,逐步加深。有理?shù)的四則運算最終要歸結(jié)為非負數(shù)的運算,因此“絕對值”概念應(yīng)該是我們教學(xué)中必須抓住的關(guān)鍵點。而定義絕對值又要用到“互為相反數(shù)”的概念,“數(shù)軸”又是講授這兩個概念的基礎(chǔ),一定要注意數(shù)形結(jié)合,加強直觀性,不能急于求成。學(xué)生正確掌握、熟練運用絕對值這一概念,是要有一個過程的。在結(jié)合實例利用數(shù)軸來說明絕對值概念后,還得在練習(xí)中逐步加深認識、進行鞏固。
學(xué)生在小學(xué)做習(xí)題,滿足于只是進行計算。而到初一,為了使其能正確理解運算法則,盡量避免計算中的錯誤,就不能只是滿足于得出一個正確答案,應(yīng)該要求學(xué)生每做一步都要想想根據(jù)什么,要靈活運用所學(xué)知識,以求達到良好的教學(xué)效果。這樣,不但可以培養(yǎng)學(xué)生的運算思維能力,也可使學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
初中生思維正由形象思維向抽象思維過渡。思維的不穩(wěn)定性以及思維模式的尚未形成,決定了列方程解應(yīng)用題的學(xué)習(xí)將是初一學(xué)生面臨的一個難度非常大的坎。列方程解應(yīng)用題的教學(xué)往往是費力不小,效果不佳。因為學(xué)生解題時只習(xí)慣小學(xué)的思維套用公式,屬定勢思維,不善于分析、轉(zhuǎn)化和作進一步的深入思考,思路狹窄、呆滯,題目稍有變化就束手無策。初一學(xué)生在解應(yīng)用題時,主要存在三個方面的困難:(1)抓不住相等關(guān)系;(2)找出相等關(guān)系后不會列方程;(3)習(xí)慣用算術(shù)解法,對用代數(shù)方法分析應(yīng)用題不適應(yīng),不知道要抓相等關(guān)系。
篇13
解決策略
初中數(shù)學(xué)是一個整體。初二的難點最多,初三的考點最多。相對而言,初一數(shù)學(xué)知識點雖然很多,但都比較簡單。很多同學(xué)在學(xué)校里的學(xué)習(xí)中感受不到壓力,慢慢積累了很多小問題,這些問題在進入初二,遇到困難(如學(xué)科的增加、難度的加深)后,就凸現(xiàn)出來。現(xiàn)在中考的初二學(xué)員中,有一部分新同學(xué)就是對初一數(shù)學(xué)不夠重視,在進入初二后,發(fā)現(xiàn)跟不上老師的進度,感覺學(xué)習(xí)數(shù)學(xué)越來越吃力,希望參加我們的輔導(dǎo)班來彌補的。這個問題究其原因,主要是對初一數(shù)學(xué)的基礎(chǔ)性,重視不夠。我們這里先列舉一下在初一數(shù)學(xué)學(xué)習(xí)中經(jīng)常出現(xiàn)的幾個問題:
1、對知識點的理解停留在一知半解的層次上;
2、解題始終不能把握其中關(guān)鍵的數(shù)學(xué)技巧,孤立的看待每一道題,缺乏舉一反三的能力;
3、解題時,小錯誤太多,始終不能完整的解決問題;
4、解題效率低,在規(guī)定的時間內(nèi)不能完成一定量的題目,不適應(yīng)考試節(jié)奏;
5、未養(yǎng)成總結(jié)歸納的習(xí)慣,不能習(xí)慣性的歸納所學(xué)的知識點。
以上這些問題如果在初一階段不能很好的解決,在初二的兩極分化階段,同學(xué)們可能就會出現(xiàn)成績的滑坡。相反,如果能夠打好初一數(shù)學(xué)基礎(chǔ),初二的學(xué)習(xí)只會是知識點上的增多和難度的增加,在學(xué)習(xí)方法上同學(xué)們是很容易適應(yīng)的。
那怎樣才能打好初一的數(shù)學(xué)基礎(chǔ)呢?
一、細心地發(fā)掘概念和公式
很多同學(xué)對概念和公式不夠重視,這類問題反映在三個方面:一是,對概念的理解只是停留在文字表面,對概念的特殊情況重視不夠。例如,在代數(shù)式的概念(用字母或數(shù)字表示的式子是代數(shù)式)中,很多同學(xué)忽略了“單個字母或數(shù)字也是代數(shù)式”。二是,對概念和公式一味的死記硬背,缺乏與實際題目的聯(lián)系。這樣就不能很好的將學(xué)到的知識點與解題聯(lián)系起來。三是,一部分同學(xué)不重視對數(shù)學(xué)公式的記憶。記憶是理解的基礎(chǔ)。如果你不能將公式爛熟于心,又怎能夠在題目中熟練應(yīng)用呢?
我們的建議是:更細心一點(觀察特例),更深入一點(了解它在題目中的常見考點),更熟練一點(無論它以什么面目出現(xiàn),我們都能夠應(yīng)用自如)。
二、總結(jié)相似的類型題目
這個工作,不僅僅是老師的事,我們的同學(xué)要學(xué)會自己做。當(dāng)你會總結(jié)題目,對所做的題目會分類,知道自己能夠解決哪些題型,掌握了哪些常見的解題方法,還有哪些類型題不會做時,你才真正的掌握了這門學(xué)科的竅門,才能真正的做到“任它千變?nèi)f化,我自巋然不動”。這個問題如果解決不好,在進入初二、初三以后,同學(xué)們會發(fā)現(xiàn),有一部分同學(xué)天天做題,可成績不升反降。其原因就是,他們天天都在做重復(fù)的工作,很多相似的題目反復(fù)做,需要解決的問題卻不能專心攻克。久而久之,不會的題目還是不會,會做的題目也因為缺乏對數(shù)學(xué)的整體把握,弄的一團糟。
我們的建議是:“總結(jié)歸納”是將題目越做越少的最好辦法。
三、收集自己的典型錯誤和不會的題目
同學(xué)們最難面對的,就是自己的錯誤和困難。但這恰恰又是最需要解決的問題。同學(xué)們做題目,有兩個重要的目的:一是,將所學(xué)的知識點和技巧,在實際的題目中演練。另外一個就是,找出自己的不足,然后彌補它。這個不足,也包括兩個方面,容易犯的錯誤和完全不會的內(nèi)容。但現(xiàn)實情況是,同學(xué)們只追求做題的數(shù)量,草草的應(yīng)付作業(yè)了事,而不追求解決出現(xiàn)的問題,更談不上收集錯誤。我們之所以建議大家收集自己的典型錯誤和不會的題目,是因為,一旦你做了這件事,你就會發(fā)現(xiàn),過去你認為自己有很多的小毛病,現(xiàn)在發(fā)現(xiàn)原來就是這一個反復(fù)在出現(xiàn);過去你認為自己有很多問題都不懂,現(xiàn)在發(fā)現(xiàn)原來就這幾個關(guān)鍵點沒有解決。
我們的建議是:做題就像挖金礦,每一道錯題都是一塊金礦,只有發(fā)掘、冶煉,才會有收獲。
四、就不懂的問題,積極提問、討論
發(fā)現(xiàn)了不懂的問題,積極向他人請教。這是很平常的道理。但就是這一點,很多同學(xué)都做不到。原因可能有兩個方面:一是,對該問題的重視不夠,不求甚解;二是,不好意思,怕問老師被訓(xùn),問同學(xué)被同學(xué)瞧不起。抱著這樣的心態(tài),學(xué)習(xí)任何東西都不可能學(xué)好?!伴]門造車”只會讓你的問題越來越多。知識本身是有連貫性的,前面的知識不清楚,學(xué)到后面時,會更難理解。這些問題積累到一定程度,就會造成你對該學(xué)科慢慢失去興趣。直到無法趕上步伐。
討論是一種非常好的學(xué)習(xí)方法。一個比較難的題目,經(jīng)過與同學(xué)討論,你可能就會獲得很好的靈感,從對方那里學(xué)到好的方法和技巧。需要注意的是,討論的對象最好是與自己水平相當(dāng)?shù)耐瑢W(xué),這樣有利于大家相互學(xué)習(xí)。
我們的建議是:“勤學(xué)”是基礎(chǔ),“好問”是關(guān)鍵。
五、注重實戰(zhàn)(考試)經(jīng)驗的培養(yǎng)