日韩偷拍一区二区,国产香蕉久久精品综合网,亚洲激情五月婷婷,欧美日韩国产不卡

在線客服

量子化學(xué)基礎(chǔ)實(shí)用13篇

引論:我們?yōu)槟砹?3篇量子化學(xué)基礎(chǔ)范文,供您借鑒以豐富您的創(chuàng)作。它們是您寫作時(shí)的寶貴資源,期望它們能夠激發(fā)您的創(chuàng)作靈感,讓您的文章更具深度。

量子化學(xué)基礎(chǔ)

篇1

三、開展第二課堂,培養(yǎng)學(xué)生計(jì)算技能

為了讓學(xué)生把學(xué)到的量子化學(xué)理論運(yùn)用到研究中,掌握一些專業(yè)軟件的計(jì)算技巧,教師可利用課余時(shí)間開展第二課堂,為學(xué)生提供一個(gè)學(xué)習(xí)和實(shí)踐的平臺(tái),給他們創(chuàng)造更多的鍛煉機(jī)會(huì)。例如,搞有機(jī)合成的研究生,根據(jù)專業(yè)需要可以讓這些學(xué)生學(xué)會(huì)過渡態(tài)的尋找和優(yōu)化,通過理論計(jì)算探索反應(yīng)機(jī)理,能預(yù)測(cè)最佳反應(yīng)通道,為他們的研究方向提供理論支持;研究方向是無機(jī)配位化學(xué),可以讓這些學(xué)生學(xué)習(xí)一些金屬配合物的計(jì)算方法,學(xué)習(xí)配合物電子吸收光譜、熒光光譜及磁性的計(jì)算,這些計(jì)算結(jié)果對(duì)合成具有特殊性能的配合物都是很有幫助的。在第二課堂中,也可以讓基礎(chǔ)較好的學(xué)生參與到自己的科研活動(dòng)中,承擔(dān)一部分力所能及的科研課題,使學(xué)生科研能力得到鍛煉,激發(fā)他們的科研熱情,拓寬他們的視野,同時(shí)自己通過學(xué)生的實(shí)踐活動(dòng),找到自己課堂教學(xué)中的不足。第二課堂的開展,不僅把學(xué)生所學(xué)的理論知識(shí)轉(zhuǎn)化成學(xué)生認(rèn)識(shí)和解決實(shí)際問題的能力,更重要的是教師身上這些品質(zhì)能夠言傳身教地影響學(xué)生,從而使學(xué)生具備創(chuàng)造的興趣和素質(zhì)。

四、結(jié)語

量子化學(xué)的教學(xué)改革取得了一定的效果,首先學(xué)生克服了量子化學(xué)難學(xué)的畏難心理,激發(fā)了學(xué)生學(xué)習(xí)量子化學(xué)的激情,可以在有限的教學(xué)時(shí)間內(nèi)達(dá)到較好的教學(xué)效果;其次,通過開展第二課堂,將量子化學(xué)理論與科研實(shí)例有機(jī)地結(jié)合起來,培養(yǎng)了學(xué)生分析問題、解決問題及科研創(chuàng)新的能力。

篇2

一、 在材料科學(xué)中的應(yīng)用

(一)在建筑材料方面的應(yīng)用

水泥是重要的建筑材料之一。1993年,計(jì)算量子化學(xué)開始廣泛地應(yīng)用于許多水泥熟料礦物和水化產(chǎn)物體系的研究中,解決了很多實(shí)際問題。

鈣礬石相是許多水泥品種的主要水化產(chǎn)物相之一,它對(duì)水泥石的強(qiáng)度起著關(guān)鍵作用。程新等[1 ,2]在假設(shè)材料的力學(xué)強(qiáng)度決定于化學(xué)鍵強(qiáng)度的前提下,研究了幾種鈣礬石相力學(xué)強(qiáng)度的大小差異。計(jì)算發(fā)現(xiàn),含Ca 鈣礬石、含Ba 鈣礬石和含Sr 鈣礬石的Al -O鍵級(jí)基本一致,而含Sr 鈣礬石、含Ba 鈣礬石中的Sr,Ba 原子鍵級(jí)與Sr-O,Ba -O共價(jià)鍵級(jí)都分別大于含Ca 鈣礬石中的Ca 原子鍵級(jí)和Ca -O共價(jià)鍵級(jí),由此認(rèn)為,含Sr 、Ba 硫鋁酸鹽的膠凝強(qiáng)度高于硫鋁酸鈣的膠凝強(qiáng)度[3]。

將量子化學(xué)理論與方法引入水泥化學(xué)領(lǐng)域,是一門前景廣闊的研究課題,它將有助于人們直接將分子的微觀結(jié)構(gòu)與宏觀性能聯(lián)系起來,也為水泥材料的設(shè)計(jì)提供了一條新的途徑[3]。

(二) 在金屬及合金材料方面的應(yīng)用

過渡金屬(Fe 、Co、Ni)中氫雜質(zhì)的超精細(xì)場(chǎng)和電子結(jié)構(gòu),通過量子化學(xué)計(jì)算表明,含有雜質(zhì)石原子的磁矩要降低,這與實(shí)驗(yàn)結(jié)果非常一致。閔新民等[4]通過量子化學(xué)方法研究了鑭系三氟化物。結(jié)果表明,在LnF3中Ln原子軌道參與成鍵的次序是:d>f>p>s,其結(jié)合能計(jì)算值與實(shí)驗(yàn)值定性趨勢(shì)一致。此方法還廣泛用于金屬氧化物固體的電子結(jié)構(gòu)及光譜的計(jì)算[5]。再比如說,NbO2是一個(gè)在810℃具有相變的物質(zhì)(由金紅石型變成四方體心),其高溫相的NbO2的電子結(jié)構(gòu)和光譜也是通過量子化學(xué)方法進(jìn)行的計(jì)算和討論,并通過計(jì)算指出它和低溫NbO2及其等電子化合物VO2在性質(zhì)方面存在的差異[6]。

量子化學(xué)方法因其精確度高,計(jì)算機(jī)時(shí)少而廣泛應(yīng)用于材料科學(xué)中,并取得了許多有意義的結(jié)果。隨著量子化學(xué)方法的不斷完善,同時(shí)由于電子計(jì)算機(jī)的飛速發(fā)展和普及,量子化學(xué)在材料科學(xué)中的應(yīng)用范圍將不斷得到拓展,將為材料科學(xué)的發(fā)展提供一條非常有意義的途徑[5]。

二、在能源研究中的應(yīng)用

(一)在煤裂解的反應(yīng)機(jī)理和動(dòng)力學(xué)性質(zhì)方面的應(yīng)用

煤是重要的能源之一。近年來隨著量子化學(xué)理論的發(fā)展和量子化學(xué)計(jì)算方法以及計(jì)算技術(shù)的進(jìn)步,量子化學(xué)方法對(duì)于深入探索煤的結(jié)構(gòu)和反應(yīng)性之間的關(guān)系成為可能。

量子化學(xué)計(jì)算在研究煤的模型分子裂解反應(yīng)機(jī)理和預(yù)測(cè)反應(yīng)方向方面有許多成功的例子, 如低級(jí)芳香烴作為碳/ 碳復(fù)合材料碳前驅(qū)體熱解機(jī)理方面的研究已經(jīng)取得了比較明確的研究結(jié)果。由化學(xué)知識(shí)對(duì)所研究的低級(jí)芳香烴設(shè)想可能的自由基裂解路徑,由Guassian 98 程序中的半經(jīng)驗(yàn)方法UAM1 、在UHF/ 3-21G*水平的從頭計(jì)算方法和考慮了電子相關(guān)效應(yīng)的密度泛函UB3L YP/ 3-21G*方法對(duì)設(shè)計(jì)路徑的熱力學(xué)和動(dòng)力學(xué)進(jìn)行了計(jì)算。由理論計(jì)算方法所得到的主反應(yīng)路徑、熱力學(xué)變量和表觀活化能等結(jié)果與實(shí)驗(yàn)數(shù)據(jù)對(duì)比有較好的一致性,對(duì)煤熱解的量子化學(xué)基礎(chǔ)的研究有重要意義[7]。 轉(zhuǎn)貼于

(二)在鋰離子電池研究中的應(yīng)用

鋰離子二次電池因?yàn)榫哂须娙萘看蟆⒐ぷ麟妷焊摺⒀h(huán)壽命長、安全可靠、無記憶效應(yīng)、重量輕等優(yōu)點(diǎn),被人們稱之為“最有前途的化學(xué)電源”,被廣泛應(yīng)用于便攜式電器等小型設(shè)備,并已開始向電動(dòng)汽車、軍用潛水艇、飛機(jī)、航空等領(lǐng)域發(fā)展。

鋰離子電池又稱搖椅型電池,電池的工作過程實(shí)際上是Li + 離子在正負(fù)兩電極之間來回嵌入和脫嵌的過程。因此,深入鋰的嵌入-脫嵌機(jī)理對(duì)進(jìn)一步改善鋰離子電池的性能至關(guān)重要。Ago 等[8] 用半經(jīng)驗(yàn)分子軌道法以C32 H14作為模型碳結(jié)構(gòu)研究了鋰原子在碳層間的插入反應(yīng)。認(rèn)為鋰最有可能摻雜在碳環(huán)中心的上方位置。Ago 等[9 ] 用abinitio 分子軌道法對(duì)摻鋰的芳香族碳化合物的研究表明,隨著鋰含量的增加,鋰的離子性減少,預(yù)示在較高的摻鋰狀態(tài)下有可能存在一種Li - C 和具有共價(jià)性的Li - Li 的混合物。Satoru 等[10] 用分子軌道計(jì)算法,對(duì)低結(jié)晶度的炭素材料的摻鋰反應(yīng)進(jìn)行了研究,研究表明,鋰優(yōu)先插入到石墨層間反應(yīng),然后摻雜在石墨層中不同部位里[11]。

隨著人們對(duì)材料晶體結(jié)構(gòu)的進(jìn)一步認(rèn)識(shí)和計(jì)算機(jī)水平的更高發(fā)展,相信量子化學(xué)原理在鋰離子電池中的應(yīng)用領(lǐng)域會(huì)更廣泛、更深入、更具指導(dǎo)性。

三、 在生物大分子體系研究中的應(yīng)用

生物大分子體系的量子化學(xué)計(jì)算一直是一個(gè)具有挑戰(zhàn)性的研究領(lǐng)域,尤其是生物大分子體系的理論研究具有重要意義。由于量子化學(xué)可以在分子、電子水平上對(duì)體系進(jìn)行精細(xì)的理論研究,是其它理論研究方法所難以替代的。因此要深入理解有關(guān)酶的催化作用、基因的復(fù)制與突變、藥物與受體之間的識(shí)別與結(jié)合過程及作用方式等,都很有必要運(yùn)用量子化學(xué)的方法對(duì)這些生物大分子體系進(jìn)行研究。毫無疑問,這種研究可以幫助人們有目的地調(diào)控酶的催化作用,甚至可以有目的地修飾酶的結(jié)構(gòu)、設(shè)計(jì)并合成人工酶;可以揭示遺傳與變異的奧秘, 進(jìn)而調(diào)控基因的復(fù)制與突變,使之造福于人類;可以根據(jù)藥物與受體的結(jié)合過程和作用特點(diǎn)設(shè)計(jì)高效低毒的新藥等等,可見運(yùn)用量子化學(xué)的手段來研究生命現(xiàn)象是十分有意義的。

綜上所述,我們可以看出在材料、能源以及生物大分子體系研究中,量子化學(xué)發(fā)揮了重要的作用。在近十幾年來,由于電子計(jì)算機(jī)的飛速發(fā)展和普及,量子化學(xué)計(jì)算變得更加迅速和方便。可以預(yù)言,在不久的將來,量子化學(xué)將在更廣泛的領(lǐng)域發(fā)揮更加重要的作用。

參考文獻(xiàn):

[1]程新. [ 學(xué)位論文] .武漢:武漢工業(yè)大學(xué)材料科學(xué)與工程學(xué)院,1994

[2]程新,馮修吉.武漢工業(yè)大學(xué)學(xué)報(bào),1995,17 (4) :12

[3]李北星,程新.建筑材料學(xué)報(bào),1999,2(2):147

[4]閔新民,沈爾忠, 江元生等.化學(xué)學(xué)報(bào),1990,48(10): 973

[5]程新,陳亞明.山東建材學(xué)院學(xué)報(bào),1994,8(2):1

[6]閔新民.化學(xué)學(xué)報(bào),1992,50(5):449

[7]王寶俊,張玉貴,秦育紅等.煤炭轉(zhuǎn)化,2003,26(1):1

[8]Ago H ,Nagata K, Yoshizaw A K, et al. Bull.Chem. Soc. Jpn.,1997,70:1717

篇3

一、軟件介紹

Gaussian是目前計(jì)算化學(xué)領(lǐng)域內(nèi)最流行、應(yīng)用范圍最廣的商業(yè)化量子化學(xué)計(jì)算程序包。它最早是由美國卡內(nèi)基梅隆大學(xué)的約翰?波普在上世紀(jì)60年代末、70年代初主導(dǎo)開發(fā)的。Gaussian最早的版本是Gaussian 70,現(xiàn)在常用的是Gaussian 03,最新版本為Gaussian 09。該程序可在不同型號(hào)的大型計(jì)算機(jī)、超級(jí)計(jì)算機(jī)及工作站上運(yùn)行,是當(dāng)今理論計(jì)算化學(xué)科研工作的基本工具之一。

Gaussian程序是由許多程序相連接的體系,用于執(zhí)行各種半經(jīng)驗(yàn)和從頭算分子軌道計(jì)算。Gaussian 03 可用來預(yù)測(cè)氣相和液相條件下,分子和化學(xué)反應(yīng)的許多性質(zhì),包括:分子的能量和結(jié)構(gòu)、過渡態(tài)的能量和結(jié)構(gòu)、分子體系的振動(dòng)頻率、NMR、IR和拉曼光譜及熱化學(xué)性質(zhì)、分子軌道、原子電荷、多極矩、電子親和能、離子化勢(shì),等等[1]。

GaussView是與Gaussian配套的輔助圖形軟件,可用于繪圖、文本和結(jié)構(gòu)編輯;顯示結(jié)構(gòu)(從計(jì)算輸出文件中讀取優(yōu)化的結(jié)構(gòu))、振動(dòng)模式和化合物的分子軌道;查詢鍵長、鍵角、二面角和耦合因子等。

二、計(jì)算并顯示分子軌道

分子軌道理論是結(jié)構(gòu)化學(xué)教學(xué)的重點(diǎn)內(nèi)容之一。由于“分子軌道”中的軌道不同于經(jīng)典物理中的軌道,指的是分子中的單電子波函數(shù)φi,即分子中每個(gè)電子都是在由各個(gè)原子核和其余電子組成的平均勢(shì)場(chǎng)中運(yùn)動(dòng),那么第i個(gè)電子的運(yùn)動(dòng)狀態(tài)用波函數(shù)φi描述,該波函數(shù)又稱為分子軌道[2]。關(guān)于分子軌道的概念理解需要學(xué)生具有較好的抽象思維能力,在結(jié)構(gòu)化學(xué)教學(xué)中是重點(diǎn)和難點(diǎn)。在講述這部分內(nèi)容時(shí),可用Gaussian軟件計(jì)算相關(guān)雙原子分子的分子軌道,并用GaussView演示分子軌道的分布特點(diǎn)、電子填充情況等,幫助學(xué)生很好地理解分子軌道的概念。

下面以N2為例進(jìn)行介紹。首先,用GaussView軟件搭建分子模型、編輯輸入文件,然后用Gaussian 03程序優(yōu)化分子,就可得到各分子軌道能級(jí)。Gaussian 03優(yōu)化結(jié)果文件中會(huì)具體給出N2的各分子軌道能級(jí)大小及其對(duì)稱性。用GaussView軟件可顯示優(yōu)化分子的分子軌道形狀,見圖1。

在“分子軌道的對(duì)稱性和反應(yīng)機(jī)理”一節(jié)中,涉及前線分子軌道理論、LUMO、HOMO等概念,以及離域π鍵和共軛效應(yīng),均可用Gaussian 03和GaussView軟件計(jì)算并顯示分子軌道形狀,輔助教學(xué)。通過借助這些量子化學(xué)軟件來描述分子軌道,使得過于抽象、艱澀難懂的理論、概念變得生動(dòng)形象,直觀易懂,易被學(xué)生接受,方便教學(xué)。

三、顯示分子的振動(dòng)模式

分子光譜是測(cè)定和鑒別分子結(jié)構(gòu)的重要實(shí)驗(yàn)手段,也是分子軌道理論發(fā)展的實(shí)驗(yàn)基礎(chǔ)。分子光譜和分子的內(nèi)部運(yùn)動(dòng)密切相關(guān)。如紅外光譜來源于分子中原子的振動(dòng),不同化學(xué)鍵或基團(tuán)具有不同的振動(dòng)模式,對(duì)應(yīng)有不同的特征振動(dòng)頻率。在講述這一部分內(nèi)容時(shí),如用GaussView給學(xué)生以動(dòng)畫形式展示每一種振動(dòng),可大大提高課堂趣味性。

下面以HO為例,首先用GaussView搭建水分子的分子模型并編輯輸入文件,然后用Gaussian 03軟件進(jìn)行優(yōu)化和頻率計(jì)算,最后用GaussView打開結(jié)果文件。打開GaussView中Results下拉菜單下的Vibrations,得到圖2所示的窗口,可以看到3個(gè)振動(dòng)模式。點(diǎn)擊圖2顯示的Display Vibratons文本框中的#1行,可以看到圖2(1)所示的彎曲振動(dòng);點(diǎn)擊#2行,可看到圖2(2)所示的2個(gè)氫原子的對(duì)稱伸縮振動(dòng);點(diǎn)擊#3行,可看到圖2(3)所示的2個(gè)氫原子的不對(duì)稱伸縮振動(dòng)。每一種振動(dòng)的振動(dòng)頻率均可從圖2顯示的Display Vibratons文本框中讀出。點(diǎn)擊Display Vibratons文本框中的start按鈕,可顯示所選振動(dòng)模式的振動(dòng)動(dòng)畫,點(diǎn)擊stop,可停止該振動(dòng)。點(diǎn)擊spectrum按鈕,可以生成水分子的紅外光譜圖。在課堂上,這樣的動(dòng)畫演示可使枯燥乏味的知識(shí)變得生動(dòng)活潑,大大增強(qiáng)結(jié)構(gòu)化學(xué)的趣味性。

四、結(jié)語

Gaussian 03和GaussView等量子化學(xué)軟件在結(jié)構(gòu)化學(xué)教學(xué)中的應(yīng)用遠(yuǎn)不止以上幾種,還可以建立和顯示三維分子結(jié)構(gòu)模型、獲得分子化學(xué)反應(yīng)的性質(zhì),等等。總之,常用量子化學(xué)軟件可提供許多具體的量子化學(xué)計(jì)算結(jié)果,幫助闡述結(jié)構(gòu)化學(xué)中抽象的概念、理論,讓學(xué)生用分子模擬的方法,通過具體的實(shí)踐領(lǐng)悟微觀世界的運(yùn)動(dòng)規(guī)律、建立抽象的量子化學(xué)思維,提高學(xué)習(xí)結(jié)構(gòu)化學(xué)的積極性。

參考文獻(xiàn):

篇4

篇5

為了解決這兩大難題,人們已做了一些有益的嘗試和探索,如,整合教材內(nèi)容,采用多媒體教學(xué)等。這些改革都不同程度地改進(jìn)了結(jié)構(gòu)化學(xué)的教學(xué),也取得了一些積極的效果。但是,這些改革措施和方法并沒有徹底解決這兩大難題。我們結(jié)構(gòu)化學(xué)教學(xué)組經(jīng)過長期的嘗試和探索,得到了一種行之有效的方法,這就是在結(jié)構(gòu)化學(xué)的教學(xué)中采用目前先進(jìn)的可視化量子化學(xué)分子設(shè)計(jì)軟件來輔助教學(xué)。下面予以介紹,以期為同行們提供一些借鑒。

二、可視化量化計(jì)算軟件的使用

使用可視化的量子化學(xué)軟件,通過計(jì)算得出教材中的結(jié)論,將抽象的概念變?yōu)橹庇^的圖形,也可以通過化學(xué)軟件的使用使學(xué)生了解到所學(xué)的基本概念在實(shí)際中的應(yīng)用,在課堂上用多媒體的形式加以演示。在實(shí)際教學(xué)過程中具體做法如下:

第四章對(duì)于分子的對(duì)稱操作和點(diǎn)群的有關(guān)知識(shí),利用可視化軟件畫出具體的圖形,在課堂上利用多媒體對(duì)具體的圖形進(jìn)行各種對(duì)稱變化和操作,形象直觀容易接受。

丁二烯分子π軌道圖形

另外,對(duì)于結(jié)構(gòu)化學(xué)知識(shí)在實(shí)踐中的應(yīng)用、NMR數(shù)值的測(cè)定、偶極距、分子光譜等問題都可以利用量子化學(xué)軟件計(jì)算得出與實(shí)驗(yàn)相符合的數(shù)值,使學(xué)生進(jìn)一步了解學(xué)習(xí)結(jié)構(gòu)化學(xué)課程的作用。

篇6

文章編號(hào):1005?6629(2014)3?0011?04 中圖分類號(hào):G633.8 文獻(xiàn)標(biāo)識(shí)碼:B

2013年的諾貝爾化學(xué)獎(jiǎng)被授予了Martin Karplus、Michael Levitt以及Arieh Warshel三位美國科學(xué)家,以表彰他們?cè)诎l(fā)展復(fù)雜化學(xué)體系多尺度模型方面所做出的杰出貢獻(xiàn)。我們知道,長久以來,化學(xué)學(xué)科的奠基和發(fā)展始終離不開化學(xué)家在實(shí)驗(yàn)室中的辛勤勞動(dòng),但與此同時(shí),隨著實(shí)踐知識(shí)的不斷豐富和完善,以及運(yùn)算能力的突飛猛進(jìn),理論和計(jì)算化學(xué)有可能也應(yīng)當(dāng)在新世紀(jì)在化學(xué)學(xué)科的傳統(tǒng)領(lǐng)域發(fā)揮更大的作用。當(dāng)前,解開每個(gè)人生命背后的謎團(tuán)也是人們的興趣所在。Karplus,Levitt和Warshel三位科學(xué)家將經(jīng)典力學(xué)模擬方法結(jié)合最新發(fā)展的量子物理計(jì)算方法,為建立和發(fā)展多尺度復(fù)雜模型的理論模擬研究做出了基礎(chǔ)性的貢獻(xiàn)。那么,到底什么是理論模擬方法?它有什么重要的科學(xué)意義?對(duì)我們又有什么啟迪?

1 理論與計(jì)算化學(xué)的建立和發(fā)展歷程

20世紀(jì)初量子力學(xué)的發(fā)現(xiàn)為科學(xué)家們打開了深層次研究分子和原子的大門。量子力學(xué)中著名的薛定諤方程以其優(yōu)美簡潔的形式描述了原子和分子的重要組成部分――電子的行為[1]。1927年,Walter Heitler以及Fritz London兩位科學(xué)家利用薛定諤方程解開了氫氣分子電子結(jié)構(gòu)[2],理論化學(xué)從此悄然興起。隨后,價(jià)鍵理論[3]、Hartree-Fock理論[4]、分子軌道理論[5]等的建立極大地豐富了理論化學(xué)的內(nèi)容。從此,化學(xué)學(xué)科可以說與物理學(xué)一樣,開始了真正的兩條腿走路,而不再只是依靠實(shí)驗(yàn)知識(shí)的獲取跛足而行。

早在20世紀(jì)50年代,科學(xué)家利用半經(jīng)驗(yàn)的方法對(duì)原子軌道進(jìn)行了計(jì)算。50至60年代期間,各種各樣基于現(xiàn)代量子理論的計(jì)算已經(jīng)被用來計(jì)算一些簡單分子的電子結(jié)構(gòu)和相互作用。20世紀(jì)70年代,例如Gaussian?、ATMOL?、IBMOL?等量子化學(xué)計(jì)算軟件的開發(fā)也擴(kuò)充了計(jì)算化學(xué)的內(nèi)涵。

與此同時(shí),新的化學(xué)合成與表征技術(shù)的開發(fā)使得越來越多新穎的分子被制造出來,人們不僅需要認(rèn)識(shí)這些新分子,而且也需要借助一定手段來指導(dǎo)新分子的合成。在這樣的前提下,就需要借助計(jì)算機(jī)對(duì)分子進(jìn)行模擬。

1990年,密度泛函理論(Density Functional Theory)的提出將理論和計(jì)算化學(xué)帶到了一個(gè)新紀(jì)元。和以往的方法相比,密度泛函理論解決了以往的分子模型中電子交換和相關(guān)作用的近似,由其得出的分子幾何結(jié)構(gòu)和電子結(jié)構(gòu)的預(yù)測(cè)與實(shí)驗(yàn)數(shù)據(jù)吻合得非常好。直至目前,密度泛函理論依然是分子和化學(xué)反應(yīng)模擬中最重要也是最為常用的方法,兩位科學(xué)家Walter Kohn[6]和John Pople[7]因?yàn)榉謩e發(fā)展了密度泛函理論以及將這種量子力學(xué)計(jì)算方法融入到計(jì)算化學(xué)中去而獲得了1998年的諾貝爾化學(xué)獎(jiǎng),這是諾貝爾化學(xué)獎(jiǎng)第一次被授予理論和計(jì)算化學(xué)領(lǐng)域的科學(xué)家。獲獎(jiǎng)?wù)咧坏腜ople也是著名量子化學(xué)計(jì)算軟件Gaussian[8]的開發(fā)者之一,該軟件在2009年又進(jìn)行了一次更新,是當(dāng)今功能最完善、計(jì)算最有效、生命力最長的量子化學(xué)計(jì)算軟件。

目前,專門刊登量子化學(xué)理論、模型化學(xué)和計(jì)算化學(xué)的學(xué)術(shù)期刊也紛紛涌現(xiàn),如,美國化學(xué)會(huì)(American Chemistry Society)下已有Journal of Chemical Information and Modeling, Journal of Chemical Theory and Computation, Journal of Physical Chemistry A三本期刊出版,而著名學(xué)術(shù)出版集團(tuán)Elsevier也有Journal of Molecular Graphics and Modeling, Journal of Molecular Modeling, International Journal of Quantum Chemistry和Computational and Theoretical Chemistry等專刊,國內(nèi)也有例如《物理化學(xué)學(xué)報(bào)》和《計(jì)算機(jī)及應(yīng)用化學(xué)》等期刊。

2 復(fù)雜化學(xué)體系多尺度模型的建模以及應(yīng)用

1976年,Michael Levitt和Arieh Warshel二人提出了酶催化生物化學(xué)反應(yīng)的通用理論研究方法[10]。這個(gè)方法將生物酶-底物間的復(fù)合物和溶劑作用一起考慮在整個(gè)體系之內(nèi),并且用量子力學(xué)和經(jīng)典力學(xué)兩種方法探討了所有可能影響催化路徑的因素。其中,量子力學(xué)包含了酶-底物鍵的斷裂,底物與酶結(jié)合時(shí)電荷的重新分布;而經(jīng)典力學(xué)部分則考慮了酶和底物之間的立體作用能和靜電作用能。綜合考慮以上兩點(diǎn),兩位作者以一種水解酶裂解糖苷鍵為實(shí)例,首次進(jìn)行了水解酶-糖苷這個(gè)復(fù)雜化學(xué)體系多尺度模型的理論計(jì)算(圖1)。如今復(fù)雜化學(xué)體系的QM/MM方法已經(jīng)被廣泛應(yīng)用到酶-底物催化反應(yīng),有機(jī)反應(yīng)以及DNA/RNA的相關(guān)研究中去。

那么,如何建立一個(gè)合理的多尺度復(fù)雜模型?科學(xué)家們和軟件工程師們通力合作開發(fā)出了各種功能強(qiáng)大的分子建模和可視化軟件。對(duì)于小分子的構(gòu)建,最為常用的為PerkinElmer公司下屬的劍橋軟件公司開發(fā)的ChemBioOffice?系列軟件,包括了ChemBioDraw?和ChemBio 3D?兩個(gè)模塊(圖2)。當(dāng)在軟件窗口的右側(cè)ChemDraw?面板畫出感興趣的分子后,左邊的窗口就會(huì)立即顯示出分子的3D模型。本軟件還包括了其他很多內(nèi)容,例如對(duì)分子進(jìn)行簡單的幾何結(jié)構(gòu)優(yōu)化操作或者分子動(dòng)力學(xué)計(jì)算,根據(jù)計(jì)算結(jié)果畫出分子的部分電荷、分子軌道等信息。

GaussView?是Gaussian公司開發(fā)的用于分子建模的軟件包,目前已經(jīng)更新到GaussView5.0b版本。此軟件包的功能類似于ChemBioOffice?,該軟件并不如ChemBioOffice?那樣還具有計(jì)算功能,而只是作為量子化學(xué)計(jì)算軟件Gaussian?的圖形輸入接口,圖3是利用GaussView?創(chuàng)建了聯(lián)苯分子,當(dāng)利用Gaussian?軟件對(duì)分子進(jìn)行計(jì)算完畢之后,也能夠展示分子軌道的圖形。

以上兩種軟件不僅可以在各自的軟件內(nèi)部進(jìn)行計(jì)算,而且ChemBioOffice?軟件還提供了Gaussian?計(jì)算軟件的接口。我們可以在ChemBioOffice?中構(gòu)建完小分子,并設(shè)置運(yùn)行參數(shù)之后在Gaussian?中進(jìn)行對(duì)應(yīng)的計(jì)算。

在一個(gè)復(fù)雜化學(xué)體系中,往往還要涉及到生物大分子的構(gòu)建。現(xiàn)在科學(xué)家們已經(jīng)構(gòu)建起了大分子結(jié)構(gòu)庫,最著名就是由美國布魯克海文(Brookhaven)國家實(shí)驗(yàn)室建立的蛋白質(zhì)數(shù)據(jù)庫(Protein Data Bank,http:// rcsb.org)。庫內(nèi)包含了蛋白質(zhì)、多肽、DNA、RNA等95644個(gè)晶體結(jié)構(gòu)數(shù)據(jù)。我們可以通過下載數(shù)據(jù)來得到生物大分子的晶體結(jié)構(gòu)。

Accelrys公司開發(fā)的Discovery Studio Client?軟件能夠讀取從Protein Data Bank下載的pdb文件,如圖4展示的是Discovery Studio Client?的界面,展示了人體血清白蛋白和一種DNA的結(jié)構(gòu)。

此外,Discovery Studio Client?還具有將小分子和大分子組裝結(jié)合在一起的功能,如圖5分別是將一種長鏈的污染物分子結(jié)合到了脂肪酸結(jié)合酶和人體血清白蛋白中,這就完成了一個(gè)復(fù)雜化學(xué)體系的模型構(gòu)建。

VMD?軟件也是一種常用的可視化軟件,相對(duì)于Discovery Studio Client?,其功能更側(cè)重于動(dòng)態(tài)展現(xiàn)動(dòng)力學(xué)情況下分子的運(yùn)動(dòng)和形變情況。圖6則是VMD?軟件的界面以及其展示的人體血清白蛋白分子和DNA分子。

在分子建模完成之后,就可以對(duì)一個(gè)建立完成的化學(xué)體系進(jìn)行理論的計(jì)算,預(yù)測(cè)這個(gè)復(fù)雜化學(xué)體系的物理化學(xué)性質(zhì)。對(duì)于一個(gè)多尺度模型的計(jì)算,計(jì)算方法的選擇也是多尺度的。首先,對(duì)需要模擬的化學(xué)反應(yīng)的區(qū)域要進(jìn)行界定。在界定了這個(gè)區(qū)域之后,必須對(duì)這個(gè)區(qū)域內(nèi)的分子進(jìn)行高精度的量子化學(xué)計(jì)算,模擬或預(yù)測(cè)該區(qū)域內(nèi)可能存在的化學(xué)鍵以及鍵的斷裂。在界定的反應(yīng)區(qū)域之外,由于不牽涉到化學(xué)反應(yīng),所以不需要高精度的量子化學(xué)計(jì)算方法,而只需要相對(duì)簡單的半經(jīng)驗(yàn)的計(jì)算方法或者更簡單的分子力學(xué)方法進(jìn)行計(jì)算。總而言之,這就是復(fù)雜化學(xué)體系多尺度模型的計(jì)算,即QM/MM計(jì)算。涉及量子化學(xué)部分的QM計(jì)算,需要用到包含量子化學(xué)計(jì)算的軟件,例如最著名的Gaussian?,GAMESS?等。在這些軟件中,也可以采用ONIOM方法[12]進(jìn)行計(jì)算。

3 復(fù)雜化學(xué)體系多尺度模型建立的科學(xué)意義及其展望

結(jié)合理論以及計(jì)算化學(xué)發(fā)展本身的歷程來看,復(fù)雜化學(xué)體系多尺度模型具有十分重要的科學(xué)意義。首先,此模型的建立使我們從簡單分子的化學(xué)反應(yīng)進(jìn)入到了生物大分子體系的理論計(jì)算研究。利用理論計(jì)算這個(gè)強(qiáng)有力的工具,生命科學(xué)的奧秘將很快被解開,人們對(duì)生命科學(xué)背后的化學(xué)機(jī)制的認(rèn)識(shí)將會(huì)上升到分子層面,對(duì)帶動(dòng)化學(xué),乃至生命科學(xué)學(xué)科具有舉足輕重的作用。其次,多尺度模型的建立也能夠促進(jìn)理論和計(jì)算化學(xué)本身的發(fā)展,豐富理論和計(jì)算化學(xué)本身的內(nèi)涵,并且隨著研究體系的進(jìn)一步復(fù)雜化,將在現(xiàn)有的多尺度基礎(chǔ)上提出新的超尺度模型的可能。

此外,作為一門交叉學(xué)科,理論和計(jì)算化學(xué)的發(fā)展也勢(shì)必會(huì)帶動(dòng)其他相關(guān)學(xué)科的進(jìn)一步發(fā)展。90年代開始,納米學(xué)科蓬勃發(fā)展,各種新材料如雨后春筍般出現(xiàn),得益于理論化學(xué)中平面波和贗勢(shì)(即將離子實(shí)的內(nèi)部勢(shì)能用假想的勢(shì)能取代真實(shí)的勢(shì)能,但在求解波動(dòng)方程時(shí),不改變能量本征值和離子實(shí)之間區(qū)域的波函數(shù))的發(fā)展,對(duì)具有周期性結(jié)構(gòu)的晶體材料性質(zhì)的模擬和預(yù)測(cè)也成為可能。目前,已經(jīng)有Material Studio?、VASP?等多種模擬軟件。在藥物合成方面,計(jì)算機(jī)輔助藥物合成的概念已經(jīng)深入人心(Computer-aided Drug Design)。顧名思義,計(jì)算機(jī)輔助藥物設(shè)計(jì)利用計(jì)算化學(xué)這個(gè)強(qiáng)有力的工具來發(fā)現(xiàn)或者研究具有生物活性的藥物分子的行為,其最基本的目標(biāo)就是通過計(jì)算化學(xué)來預(yù)測(cè)一個(gè)分子與靶生物分子是否會(huì)結(jié)合,并且其結(jié)合能力有多強(qiáng),能夠?qū)崿F(xiàn)這一功能的軟件則包括了GOLD?、SYBYL?等等。

可以說,理論和計(jì)算化學(xué)已經(jīng)成為輔助化學(xué)家們探索世界的重要工具,也成為了指引科學(xué)家探索未知世界的新羅盤。

參考文獻(xiàn):

[1] Schrodinger E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev., 1926, 28, 1049~1070.

[2] Heitler, W. & London, F. Wechselwirkung Neutraler Atome und hom?opolare Bindung nach der Quantenmechanik. Zeitschrift fur Physic 1927, (44): 455~472.

[3] Pauling, L. Electronic Structure of the Benzene Molecule. Nature, 1987: 325, 396.

[4] Levine, I. N. Quantum Chemistry (4th edition), Englewood Cliffes, New Jersey: Prentice Hall.

[5] Mulliken, R. S. Electronic Structures of Polyatomic Molecules and Valence. II. General Considerations. Phys. Rev. 1932, (41): 49~71.

[6] Hohenberg P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, (136): B864~B871.

[7] Pople, J. A. Molecular Association in Liquids: II. A Theory of the Structure of Water. Proc. Royal Soc. A, 1951: 205, 163.

[8] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, ?. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

篇7

化學(xué)研究的核心在于“化”字,即分子之間的相互轉(zhuǎn)化,舊化學(xué)鍵斷裂、新化學(xué)鍵生成。只有這樣,才能創(chuàng)造出新材料,設(shè)計(jì)出新藥物。可是,分子之間的轉(zhuǎn)化經(jīng)常發(fā)生得很快,在毫秒瞬間,電子便從一個(gè)原子核躍遷到另一個(gè),傳統(tǒng)的化學(xué)方式已很難捕捉這個(gè)過程,必須借助計(jì)算機(jī)這一工具。時(shí)至今日,計(jì)算機(jī)對(duì)化學(xué)家的作用已經(jīng)和化學(xué)實(shí)驗(yàn)手段一樣重要。因?yàn)橛?jì)算機(jī)對(duì)化學(xué)反應(yīng)的模擬能夠非常逼真,化學(xué)家們已經(jīng)能夠通過計(jì)算機(jī)預(yù)測(cè)傳統(tǒng)實(shí)驗(yàn)的結(jié)果了。

在20世紀(jì)70年代計(jì)算機(jī)還未被普及的時(shí)候,馬丁·卡普拉斯、邁克爾·萊維特及亞利耶·瓦謝爾就打造了堅(jiān)實(shí)的計(jì)算機(jī)程序基礎(chǔ),為后人用于了解和預(yù)測(cè)化學(xué)反應(yīng)進(jìn)程作了強(qiáng)大鋪墊。近年來,因?yàn)橛?jì)算方法和計(jì)算機(jī)軟硬件的飛速發(fā)展,在他們的基礎(chǔ)上取得了很多的后續(xù)成果,并得到推廣應(yīng)用。

得益于他們的工作,我們將解開許多關(guān)于自然界的疑問。比如世界上最重要的化學(xué)反應(yīng)——光合作用是怎么進(jìn)行的?如果能模擬出來,那么我們就將能制造出更加高效的太陽能電池板;催化劑如何加快化學(xué)反應(yīng)?如果深入了解其中的機(jī)理,我們可以嘗試通過催化讓水分子分解,從而開發(fā)出清潔的能源;藥物如何在人體中發(fā)生作用?通過計(jì)算的方法,尋找出藥物的靶點(diǎn)以及可能的藥物干擾,我們就能設(shè)計(jì)出滿足我們特定需求的理想藥物。

諾貝爾“理綜”獎(jiǎng)?

如果化學(xué)反應(yīng)在氣相中發(fā)生,由于參與反應(yīng)的分子受環(huán)境影響小,因此是理想的模型體

系(1986年,李遠(yuǎn)哲等三人因?yàn)橛脤?shí)驗(yàn)方法揭示氣相化學(xué)反應(yīng)微觀細(xì)節(jié)而獲得諾貝爾化學(xué)獎(jiǎng));然而,化學(xué)反應(yīng)更多是在液相,在生物體系中發(fā)生,體系自由度多,非常復(fù)雜,不容易弄清楚細(xì)節(jié)。而反映真實(shí)情況的多尺度模型可以用來研究復(fù)雜體系的分子行為,包括液相化學(xué)反應(yīng)或者是生化反應(yīng)。

為什么生物體系中的分子反應(yīng)如此復(fù)雜呢?舉例來說,“人體的一個(gè)細(xì)胞內(nèi)就可有上百億個(gè)蛋白質(zhì)分子。一個(gè)大的蛋白質(zhì)分子可包含上百萬個(gè)原子。蛋白質(zhì)內(nèi)每兩個(gè)原子間都有相互作用,這些原子處于不停的運(yùn)動(dòng)中,其情形就像北京城內(nèi)同一時(shí)刻有兩百萬輛機(jī)動(dòng)車行駛一樣。計(jì)算和跟蹤一個(gè)蛋白質(zhì)的原子運(yùn)動(dòng)就像記錄和監(jiān)控北京的車輛一樣。如此巨大的分析計(jì)算量必須借助計(jì)算機(jī)技術(shù)來存儲(chǔ)和分析。”這番話出自中科院計(jì)算數(shù)學(xué)與科學(xué)工程計(jì)算研究所的盧本卓研究員,他的研究方向就與此次諾貝爾化學(xué)獎(jiǎng)相關(guān),而他原本是學(xué)物理出身。這是不是有點(diǎn)兒“亂套”了?當(dāng)然沒有,而且還恰恰反映了本屆諾貝爾化學(xué)獎(jiǎng)的交叉學(xué)科屬性,即計(jì)算機(jī)、物理、數(shù)學(xué)、生物學(xué)和化學(xué)等多學(xué)科相互滲透和融合。難怪本屆諾貝爾化學(xué)獎(jiǎng)被戲稱為諾貝爾“理綜”獎(jiǎng)。

這是化學(xué)的榮譽(yù)

雖然被戲稱為“理綜”獎(jiǎng),但這的的確確是屬于化學(xué)的榮譽(yù)。理論化學(xué)發(fā)展到今天,其最大的組成部分就是計(jì)算化學(xué)。計(jì)算化學(xué)的基礎(chǔ)理論大多來源于兩部分:量子力學(xué)和牛頓經(jīng)典力學(xué),這兩個(gè)學(xué)科在化學(xué)上的應(yīng)用則分別誕生了量子化學(xué)和分子模擬兩個(gè)學(xué)科。涉及電子的化學(xué)反應(yīng)需要用量子化學(xué)來解決,一旦涉及到分子間的相互作用,其量子效應(yīng)往往可以忽略不計(jì),使用經(jīng)典力學(xué)就足以描述,從而大大地簡化了計(jì)算,這就是分子模擬。

篇8

作者認(rèn)為任何物質(zhì)系統(tǒng)都是一個(gè)開放系統(tǒng),它們永久地接觸隨機(jī)零點(diǎn)輻射場(chǎng),并與其達(dá)到平衡狀態(tài)。從這個(gè)基礎(chǔ)出發(fā),導(dǎo)出量子力學(xué)形式體系的核心以及非相對(duì)論QED的相對(duì)論修正,同時(shí)揭示了基本的物理機(jī)制。本書打開了通向進(jìn)一步探索并揭示物理的新大門。讀者會(huì)看到,這一任務(wù)遠(yuǎn)沒有結(jié)束,仍存在很多問題沒有考察到,期待進(jìn)一步研究。

本書闡明了量子理論一些核心特點(diǎn)的根源,諸如原子的穩(wěn)定性,電子自旋,量子漲落、量子非定域性和糾纏。這里發(fā)展的理論重新確認(rèn)了諸如實(shí)在性、因果性、局域性和客觀性等基本的科學(xué)原理

全書內(nèi)容共分10章:1.量子力學(xué):某些問題;2.唯象隨機(jī)方法:通向量子力學(xué)的簡捷途徑;3.普朗克分布,漲落零點(diǎn)場(chǎng)的一個(gè)必然推論;4.通向薛定諤方程的漫長旅途;5.通向海森伯量子力學(xué)之路;6.超越薛定諤方程;7.解開量子糾纏; 8.量子力學(xué)的因果性、非定域性和糾纏; 10.零點(diǎn)場(chǎng)波(和)物質(zhì)。

本書適合熟悉量子力學(xué)的最基本概念和結(jié)果的讀者閱讀。其內(nèi)容適用于從事理論物理、數(shù)學(xué)物理、實(shí)驗(yàn)物理、量子化學(xué)和物理哲學(xué)的研究人員、研究生和教師參考。

丁亦兵,教授

(中國科學(xué)院大學(xué))

Ding Yibing,Professor

(The University,CAS)Ignatios Antoniadis et al

Supersymmetry After the

Higgs Discovery

2014

http:///book/

篇9

積極與相關(guān)領(lǐng)導(dǎo)深入溝通交流,在充分闡述“人才聯(lián)盟”成立的初衷、即將開展的業(yè)務(wù)范圍、廣泛深遠(yuǎn)的社會(huì)經(jīng)濟(jì)意義以及發(fā)展前景的基礎(chǔ)上,對(duì)可行性征詢材料進(jìn)行了系統(tǒng)的完善。

“人才聯(lián)盟”籌備委員會(huì)已經(jīng)在第一時(shí)間通知所有發(fā)起單位、會(huì)員單位以及捐資單位按照成立登記申請(qǐng)相關(guān)要求完成相關(guān)材料的整理,近期提交籌委會(huì)進(jìn)行審核、報(bào)送社會(huì)團(tuán)體管理處。

二、首批外籍院士工作站項(xiàng)目

篇10

化學(xué)的科學(xué)方法的介紹任何一門學(xué)科都有其發(fā)生和發(fā)展的過程,學(xué)習(xí)知識(shí)時(shí)若不從歷史中尋找借鑒,就易把知識(shí)當(dāng)成是“終極真理”而死記硬背,不求甚解。因此,在傳授知識(shí)的同時(shí),應(yīng)該介紹量子化學(xué)發(fā)展史,學(xué)習(xí)科學(xué)家勇于探索的精神,由師生共同創(chuàng)造一種嶄新的價(jià)值理念。例如普朗克(M.Planck)的“離經(jīng)叛道”的假設(shè);德布羅意(deBroglie)波的提出是類比法的成功典范,戴維遜(C.Davisson)-革末(L.H.Germer)的因禍得福;狄拉克(Dirac)、薛定諤(E.Schrdinger)的異曲同工———薛定諤用數(shù)學(xué)形式開辟出量子力學(xué)的新體系;另外,還有一個(gè)德國物理學(xué)家海森堡提出一個(gè)矩陣力學(xué)體系,薛定諤用的是微積分形式,海森堡用的是代數(shù)形式;湯姆遜(Thomson)父子的珠聯(lián)壁合———父親發(fā)現(xiàn)了電子,兒子又證實(shí)了電子是波,父子二人在物理學(xué)方面進(jìn)行接力研究,在科學(xué)史上傳為美談。還有徐光憲的巧妙規(guī)則,唐敖慶的獨(dú)辟蹊徑等[2]。科學(xué)的先驅(qū)是勇敢的探索者,他們常常在黑暗中摸索前進(jìn),他們的精神值得我們敬佩。學(xué)生聽到和看到這些史實(shí),無不浮想聯(lián)翩,對(duì)優(yōu)化思維結(jié)構(gòu),激發(fā)科學(xué)壯志都有潛移默化的作用。在傳授理論知識(shí)的同時(shí),指導(dǎo)學(xué)生學(xué)會(huì)抽象思維和用數(shù)學(xué)工具處理問題,并運(yùn)用類比、模擬的科學(xué)方法[3],寓科學(xué)方法于教學(xué)內(nèi)容中。類比方法是提出和建立科學(xué)假說的重要方法。例如德布羅意假設(shè)是在光的波粒二象性思想啟發(fā)下,提出電子等實(shí)物微粒也具有波動(dòng)性,他當(dāng)時(shí)推導(dǎo)固然復(fù)雜些,從科學(xué)方法論的角度講,由光的波粒二象性到實(shí)物微粒的波粒二象性是一種類比推理。類比是利用兩個(gè)或兩類對(duì)象之間在某些方面的相似或相同,推出它們?cè)谄渌矫嬉部赡芟嗨苹蛳嗤乃季S方法,是一種由特殊到特殊、由此及彼的過程。類比可以提供重要線索,啟迪思想,是發(fā)展科學(xué)知識(shí)的一種有效的試探方法。還有薛定諤受物質(zhì)波假說的啟發(fā),引出了電子運(yùn)動(dòng)的波函數(shù)方程,他走的也是依賴類比的“近路”。許多化學(xué)問題的解決有賴于類比方法的使用,而類比方法的使用有可能形成簡捷的思維路徑。使學(xué)生在學(xué)習(xí)科學(xué)知識(shí)的同時(shí),得到方法論的啟迪。在教學(xué)中應(yīng)引導(dǎo)學(xué)生追蹤量子化學(xué)發(fā)展的足跡,不失時(shí)機(jī)地揭示其中的科學(xué)方法,更清楚地了解各種知識(shí)理論的相對(duì)合理性及有待完善的地方。這樣使學(xué)生在學(xué)習(xí)過程中不僅可以獲得化學(xué)知識(shí),而且能學(xué)習(xí)科學(xué)家嚴(yán)謹(jǐn)求實(shí)的治學(xué)態(tài)度、高度的敬業(yè)精神和大膽創(chuàng)新的進(jìn)取精神。

通過改進(jìn)課程教學(xué)方法培養(yǎng)學(xué)生創(chuàng)新能力

篇11

羥汞化-脫汞是由烯烴合成醇的有效途徑之一[1]。羥汞化反應(yīng)主要分為兩個(gè)階段:①烯烴在含水的四氫呋喃溶液中與乙酸汞發(fā)生羥汞化;②羥汞化產(chǎn)物不經(jīng)分離,直接加入NaBH4進(jìn)行還原脫汞。該反應(yīng)具有條件溫和(一般在室溫進(jìn)行)、速度快(一般第一階段只需要幾分鐘,第二階段需要1小時(shí))、中間產(chǎn)物不需分離、區(qū)域選擇性好(Markovnikov取向)、無重排產(chǎn)物等優(yōu)點(diǎn)。因此,盡管汞是公認(rèn)最毒的金屬元素,但由于羥汞化反應(yīng)的諸多優(yōu)點(diǎn),該反應(yīng)仍被廣泛用于有機(jī)合成[2-3]。

以丙烯加乙酸汞為例,目前比較公認(rèn)的羥汞化反應(yīng)機(jī)理[4-5]見圖1。其中第二步和第三步最為關(guān)鍵,但是目前國內(nèi)外多數(shù)有機(jī)化學(xué)教材都沒有明確指出反應(yīng)的速控步是哪一步[6-10],部分教材甚至把羥汞化過程歸類為親電加成反應(yīng)[8-10]。我們對(duì)此產(chǎn)生疑問,整個(gè)反應(yīng)的速控步究竟是汞離子親電加成的第二步,還是水親核進(jìn)攻的第三步?下面根據(jù)軟硬酸堿理論、元素電負(fù)性等有機(jī)化學(xué)基礎(chǔ)知識(shí)以及量子化學(xué)計(jì)算結(jié)果對(duì)各步反應(yīng)分析如下:(1)第一步,乙酸汞發(fā)生電離產(chǎn)生乙酰氧基汞正離子。我們認(rèn)為該帶有正電荷的汞離子的生成是必要的。最新的研究證明氯化汞能夠催化芳基烯基醚的羥汞化反應(yīng)。加入氯化鈉等含有氯離子的無機(jī)鹽能夠抑制上述反應(yīng),而加入硝酸銀可以促進(jìn)上述反應(yīng)。因?yàn)槁入x子是軟堿,額外增加的氯離子能夠和汞離子絡(luò)合生成[HgCl4]2-,抑制了+HgCl的生成,進(jìn)而抑制了羥汞化。而加入硝酸銀,使銀離子和氯離子結(jié)合,則可以促進(jìn)+HgCl的生成,進(jìn)而促進(jìn)羥汞化反應(yīng)。對(duì)于不同的汞鹽,根據(jù)軟硬酸堿理論可以判斷其電離的難易。越容易電離的汞鹽,活性越高。不同汞化合物應(yīng)該具有如下的活性順序:Hg(OOCCF3)2>Hg(OOCCH3)2>HgCl2>HgBr2>HgI2。因?yàn)镠g2+是軟酸,CF3COO-是最硬的堿,I-是最軟的堿。所以Hg(OOCCF3)2最容易電離,HgI2則是“軟親軟”,不易電離,活性最低。實(shí)驗(yàn)結(jié)果表明Hg(OOCCF3)2對(duì)4-己烯-1-醇分子內(nèi)氧汞化速度比Hg(OOCCH3)2快,而且產(chǎn)物不同[12]。(2)第二步,乙酰氧基汞正離子與烯烴的碳碳雙鍵發(fā)生親電加成生成汞鎓離子。從軟硬酸堿理論分析,烯鍵的π電子為軟堿,汞離子為軟酸,“軟親軟”,該基元反應(yīng)應(yīng)該屬于快反應(yīng)。從電負(fù)性考慮,汞的電負(fù)性為1.9,略小于碳的2.55[13],這使正電荷主要集中在汞上而不是碳上。這一點(diǎn)與溴鎓離子截然不同,后者正電荷主要集中在碳原子上。所以,相比溴鎓離子,汞鎓離子不易受到水的親核進(jìn)攻。我們用量子化學(xué)手段計(jì)算得出乙烯、丙烯、異丁烯與乙酰氧基汞正離子加成生成的汞鎓離子中間體以及乙烯的溴鎓離子的結(jié)構(gòu)與APT電荷(atomicpolartensor-basedcharges)[14]分布(圖2)(本文量化計(jì)算均采用Gaussian03軟件包,分子構(gòu)型在RB3LYP水平下進(jìn)行優(yōu)化,其中C、O使用6-31G*基組,H使用6-31G**基組,Hg和Br使用贗勢(shì)基組(Lanl2DZ,其中對(duì)Br加上極化函數(shù)(極化參數(shù)為0.389);

對(duì)所有優(yōu)化的結(jié)構(gòu)進(jìn)行頻率計(jì)算,以確認(rèn)所有結(jié)構(gòu)均是穩(wěn)定結(jié)構(gòu)(駐點(diǎn)是極小值,沒有虛頻))。從以上計(jì)算結(jié)果可得出結(jié)論:①上述汞鎓離子中,乙酰氧基與汞原子是雙齒配位的,兩個(gè)O—Hg鍵長幾乎等長,都在2.30左右。②汞原子上總是帶有最多的正電荷。③在丙烯等不對(duì)稱烯烴的汞鎓離子中,由于甲基的供電誘導(dǎo)效應(yīng),C2上正電荷多于C1,在異丁烯的汞鎓離子中這一差異更加明顯。從乙烯到丙烯到異丁烯,Hg—C1鍵逐漸變短,從2.602變?yōu)?.478,再到2.419。而Hg—C2鍵逐漸變長,在異丁烯的汞鎓離子中,Hg—C2鍵最長,達(dá)到2.876。這都預(yù)示著第三步水親核進(jìn)攻的位置在C2上,即Markovnikov取向。④在異丁烯的汞鎓離子中,C2上帶有最多的正電荷,可以預(yù)期其與水的親核加成速度要比丙烯或乙烯的汞鎓離子更快,這一結(jié)論與實(shí)驗(yàn)結(jié)果一致[15]:2-甲基-2-丁烯的羥汞化在10s內(nèi)完成,而環(huán)己烯需要55s。⑤與電負(fù)性分析結(jié)果一致,與乙烯的乙酸汞鎓離子不同,在乙烯的溴鎓離子中,正電荷主要集中在碳原子上,溴原子上正電荷很少,這表明汞鎓離子與溴鎓離子有著本質(zhì)的不同。眾所周知,羥汞化反應(yīng)通常不會(huì)發(fā)生重排,這正是由于汞鎓離子中間體的正電荷主要集中在汞上而不是碳上的具體體現(xiàn)。因?yàn)樯婕版f離子的碳上正電荷較少,臨近α位的烴基或氫原子不易發(fā)生遷移。

我們分別計(jì)算了叔丁基乙烯的汞鎓離子和溴鎓離子甲基重排前后的能量變化,結(jié)果如圖3所示。從量子化學(xué)計(jì)算的結(jié)果也可以看出,在叔丁基乙烯汞鎓離子中,C2上的正電荷僅為0.4858e,而且甲基重排后所得到的叔碳正離子中間體的吉布斯自由能比重排前升高了77.78kJ/mol;而叔丁基乙烯的溴鎓離子中C2上正電荷高達(dá)0.8574e,非常有利于甲基遷移,而且發(fā)生類似重排后產(chǎn)物的吉布斯自由能比重排前降低了45.19kJ/mol。因此叔丁基乙烯的汞鎓離子的重排在熱力學(xué)上是極其不利的,不易重排。而叔丁基乙烯與溴的親電加成生成的溴鎓離子容易重排。事實(shí)上,許多烯烴,如:莰烯[16]、降冰片烯[17]和苯并二環(huán)[2.2.2]-2,5-辛二烯[18]與溴的親電加成都發(fā)生了重排。(3)第三步,水作為親核試劑進(jìn)攻汞鎓離子。在該步中,水分子中的氧原子是硬堿,而帶有部分正電荷的碳原子是軟酸。由于碳上的正電荷較少,水的親核性又弱,此類弱親核試劑的親核進(jìn)攻就變得更加困難。由此推斷,該步基元反應(yīng)才應(yīng)該是整個(gè)反應(yīng)的慢步驟,即整個(gè)羥汞化反應(yīng)的速控步。通過查閱文獻(xiàn)[19],這一結(jié)論得到了有力支持。例如:2-甲基-1-己烯的羥汞化反應(yīng)速度比1-己烯快10倍,比四甲基乙烯的羥汞化速度快833倍。上述實(shí)驗(yàn)結(jié)果與相應(yīng)汞鎓離子中C2上的正電荷多少有關(guān)(圖4)。2-甲基-1-己烯的汞鎓離子中C2上的正電荷最大(0.6632e),羥汞化最快;而四甲基乙烯的類似物相應(yīng)碳原子上的正電荷最少,羥汞化最慢。如果汞鎓離子生成的一步是速控步,含有4個(gè)供電甲基的四甲基乙烯與乙酸汞離子形成汞鎓離子進(jìn)而得到羥汞化中間體應(yīng)該是上述3個(gè)烯烴中最快的,然而實(shí)驗(yàn) 事實(shí)正好相反。這反過來證明汞鎓離子生成的一步不是整個(gè)羥汞化反應(yīng)的速控步。另外,對(duì)于含多個(gè)雙鍵的烯烴,羥汞化優(yōu)先發(fā)生在最不對(duì)稱的雙鍵上,即1,1-二取代優(yōu)于1,1,2-三取代,單取代優(yōu)于1,2-二取代[20],反應(yīng)速度與汞鎓離子中取代最多的碳原子上的正電荷密度成正比,也進(jìn)一步說明水親核進(jìn)攻的一步是整個(gè)反應(yīng)的速控步。(4)第四步是中間產(chǎn)物Ⅱ快速失去質(zhì)子的過程,不再贅述。(5)關(guān)于烯烴和炔烴羥汞化產(chǎn)物的脫汞問題。在烯烴的羥汞化產(chǎn)物中,由于碳與汞的電負(fù)性差別太小,使得碳汞鍵的電荷分布比較均勻,碳汞鍵的極性較小。量子化學(xué)計(jì)算得出乙烯羥汞化產(chǎn)物中與汞原子相連的碳原子上負(fù)電荷密度均為-0.1300e,同樣說明碳汞鍵的極性很小,所以乙烯羥汞化產(chǎn)物HOCH2CH2HgOAc不像其他金屬有機(jī)試劑(例如Grignard試劑)那樣容易水解,而必須使用還原劑NaBH4進(jìn)行還原。

相反,乙炔在汞催化下的水合產(chǎn)物是互變異構(gòu)體(圖5):HOCHCHHg+和OHCCH2Hg+,前者與汞相連的碳原子是sp2雜化,比sp3雜化碳原子具有更大的電負(fù)性[21]和更強(qiáng)的吸引電子能力,會(huì)使碳汞鍵極性增大;后者甲酰基是強(qiáng)吸電基,而且在稀硫酸中,氧原子會(huì)發(fā)生質(zhì)子化,使碳汞鍵極性進(jìn)一步增大。因此,乙炔羥汞化產(chǎn)物中的碳汞鍵更像一般金屬-碳鍵,在稀硫酸中容易水解。所以在炔烴羥汞化反應(yīng)中,汞離子是催化量的。為了便于比較,我們?cè)谝胰擦u汞化中間體的汞原子上螯合了一個(gè)乙酸根,量子化學(xué)計(jì)算結(jié)果見圖6。從圖6能夠明顯地看出,乙炔羥汞化產(chǎn)物中的碳汞鍵正負(fù)電荷差別明顯大于乙烯羥汞化產(chǎn)物中的碳汞鍵電荷差,鍵的極性也明顯比后者強(qiáng),即乙炔羥汞化產(chǎn)物中碳汞鍵容易直接水解變?yōu)樘細(xì)滏I。本文從有機(jī)化學(xué)基本概念、基本理論出發(fā),結(jié)合量子化學(xué)計(jì)算結(jié)果,對(duì)烯烴的羥汞化機(jī)理進(jìn)行了分析,得出該反應(yīng)的速控步是水分子親核進(jìn)攻汞鎓離子的一步,整個(gè)反應(yīng)屬親核加成。同時(shí)指出,烯烴羥汞化產(chǎn)物中的碳汞鍵極性小,不能直接水解為碳?xì)滏I,故需要硼氫化鈉還原;而炔烴羥汞化產(chǎn)物中的碳汞鍵極性較大,在反應(yīng)過程中可以直接水解轉(zhuǎn)化為碳?xì)滏I。

篇12

無機(jī)化學(xué)研究元素、單質(zhì)和無機(jī)化合物的來源、制備、結(jié)構(gòu)、性質(zhì)、變化和應(yīng)用的一門化學(xué),是化學(xué)中最古老的化學(xué)分支學(xué)科。浮選的對(duì)象為礦物巖石,本身就是無機(jī)物,礦物的表面性質(zhì)決定于礦物本身的結(jié)構(gòu)和性質(zhì),礦物表面性質(zhì)的研究離不開礦物內(nèi)部組成、結(jié)構(gòu)及性質(zhì)的研究。礦物與巖石的研究將涉及無機(jī)化學(xué)的所有領(lǐng)域與內(nèi)容,無機(jī)化學(xué)成為礦物加工工程學(xué)科學(xué)生的必修課程。有機(jī)化學(xué)又稱為碳化合物的化學(xué),是研究有機(jī)化合物的結(jié)構(gòu)、性質(zhì)、制備的學(xué)科,是化學(xué)中極重要的一個(gè)分支。含碳化合物被稱為有機(jī)化合物是因?yàn)橐酝幕瘜W(xué)家們認(rèn)為含碳物質(zhì)一定要由生物(有機(jī)體)才能制造;然而在1828年的時(shí)候,德國化學(xué)家弗里德里希•維勒,在實(shí)驗(yàn)室中成功合成尿素(一種生物分子),自此以后有機(jī)化學(xué)便脫離傳統(tǒng)所定義的范圍,擴(kuò)大為含碳物質(zhì)的化學(xué)。礦物浮選是通過改變礦物表面的疏水性來實(shí)現(xiàn)的,而增加礦物表面疏水性的方法是采用含烴基的異極性分子在礦物表面吸附,含烴基的異極性分子就是典型的有機(jī)物質(zhì)分子,研究捕收劑、起泡劑等浮選藥劑,將涉及廣泛的有機(jī)化學(xué)。有機(jī)化學(xué)也是礦物加工工程學(xué)科學(xué)生的必修課程。物理化學(xué)的內(nèi)容大致可以概括為三個(gè)方面:化學(xué)體系的宏觀平衡性質(zhì),以熱力學(xué)的三個(gè)基本定律為理論基礎(chǔ),研究宏觀化學(xué)體系在氣態(tài)、液態(tài)、固態(tài)、溶解態(tài)以及高分散狀態(tài)的平衡物理化學(xué)性質(zhì)及其規(guī)律性。屬于這方面的物理化學(xué)分支學(xué)科有化學(xué)熱力學(xué)。溶液、膠體和表面化學(xué)。化學(xué)體系的微觀結(jié)構(gòu)和性質(zhì)以量子理論為理論基礎(chǔ),研究原子和分子的結(jié)構(gòu),物體的體相中原子和分子的空間結(jié)構(gòu)、表面相的結(jié)構(gòu),以及結(jié)構(gòu)與物性的規(guī)律性。屬于這方面的物理化學(xué)分支學(xué)科有結(jié)構(gòu)化學(xué)和量子化學(xué)。化學(xué)體系的動(dòng)態(tài)性質(zhì)研究由于化學(xué)或物理因素的擾動(dòng)而引起體系中發(fā)生的化學(xué)變化過程的速率和變化機(jī)理。屬于這方面的物理化學(xué)分支學(xué)科有化學(xué)動(dòng)力學(xué)、催化、光化學(xué)和電化學(xué)。物理化學(xué)是一門內(nèi)容豐富,外延廣闊的化學(xué),浮選涉及的礦物巖石、礦漿溶液、有機(jī)分子以及泡沫浮選氣體介質(zhì)與礦物之間的相互作用等等,都涉及到物理化學(xué)。物理化學(xué)在礦物加工工程本科課程設(shè)置,占有最多的學(xué)時(shí)數(shù),分兩學(xué)期學(xué)習(xí),是礦物加工工程學(xué)科至關(guān)重要的一門化學(xué)課程。物理化學(xué)學(xué)習(xí)好壞直接關(guān)系到浮選學(xué)習(xí)。物理化學(xué)也是礦物加工工程學(xué)科研究生入學(xué)考試的必考課程。分析化學(xué)的內(nèi)容主要是:物質(zhì)中元素、基團(tuán)的定性分析;每種成分的數(shù)量或物質(zhì)純度的定量分析;物質(zhì)中原子彼此聯(lián)結(jié)而成分子和在空間排列的結(jié)構(gòu)和立體分析。研究對(duì)象從單質(zhì)到復(fù)雜的混合物和大分子化合物,從無機(jī)物到有機(jī)物,從低分子量到高分子量。樣品可以是氣態(tài)、液態(tài)和固態(tài)。稱樣重量可由100克以上以至毫克以下。1931年E.威森伯格提出的殘?jiān)鼫y(cè)定,只取10微克樣品,便屬于超微量分析。所用儀器從試管直到附自動(dòng)化設(shè)備并用電子計(jì)算機(jī)程序控制、記錄和儲(chǔ)存等的高級(jí)儀器。分析化學(xué)以化學(xué)基本理論和實(shí)驗(yàn)技術(shù)為基礎(chǔ),并吸收物理、生物、統(tǒng)計(jì)、電子計(jì)算機(jī)、自動(dòng)化等方面的知識(shí)以充實(shí)本身的內(nèi)容,從而解決科學(xué)、技術(shù)所提出的各種分析問題。礦物加工工程學(xué)科涉及的礦物巖石、溶液、有機(jī)和無機(jī)藥劑、礦物加工原料及產(chǎn)品都需要通過分析檢測(cè)得以定性或定量的描述,理論研究過程中的儀器分析檢測(cè),對(duì)礦物加工過程中的行為機(jī)理也才能進(jìn)行研究和了解,所以礦物加工也與分析化學(xué)密切相關(guān)。礦物加工工程學(xué)科課程設(shè)置中,在本科階段或者在研究生階段需要對(duì)分析化學(xué)進(jìn)行系統(tǒng)學(xué)習(xí)。結(jié)構(gòu)化學(xué)、高分子化學(xué)、絡(luò)合物化學(xué)、電化學(xué)、量子化學(xué)等是比以上四大化學(xué)更加細(xì)化的化學(xué)分支方向,在進(jìn)行礦物浮選研究中,針對(duì)具體的研究內(nèi)容和目的,不同程度地將涉及到這些更加深入和細(xì)化的內(nèi)容。為了使化學(xué)與礦物加工工程學(xué)科結(jié)合的更加緊密,在研究生階段還開設(shè)了浮選表面化學(xué)、浮選藥劑化學(xué)、浮選電化學(xué)、浮選溶液化學(xué)等。盡管在礦物加工工程學(xué)科不同階段開設(shè)了大量的化學(xué)課程,涉及的化學(xué)內(nèi)容幾乎涵蓋了化學(xué)領(lǐng)域的所有內(nèi)容,但對(duì)浮選的深入研究和理解仍然不夠。礦物浮選發(fā)展至今,還有大量的浮選理論問題沒有解決,浮選工藝的水平還有待提升,進(jìn)一步強(qiáng)化化學(xué)教育和礦物浮選化學(xué)研究對(duì)礦物浮選的發(fā)展具有重要的基礎(chǔ)作用。

2各層次人才培養(yǎng)中的化學(xué)教育

以技術(shù)工人為培養(yǎng)目標(biāo)的中專和職業(yè)教育,由于生源大多是初中和高中畢業(yè)生,化學(xué)知識(shí)非常有限,僅對(duì)一些化學(xué)基礎(chǔ)知識(shí)有所了解,特別是初中文化水平的學(xué)生,只能了解一些初步的化學(xué)現(xiàn)象,因此,在進(jìn)行礦物加工專業(yè)知識(shí)教學(xué)的過程中,必須補(bǔ)充一些學(xué)習(xí)浮選技術(shù)必要的化學(xué)知識(shí)。這種化學(xué)知識(shí)的補(bǔ)充,可以貫穿在專業(yè)知識(shí)的學(xué)習(xí)過程中,也可以單獨(dú)開設(shè)簡單的化學(xué)課程。只有在學(xué)生初步了解和掌握了浮選技術(shù)必備的基本化學(xué)知識(shí)以后,浮選技術(shù)專業(yè)課程的教學(xué)才能有效開展,學(xué)生也才能真正理解礦物浮選的技術(shù)知識(shí)。對(duì)于以生產(chǎn)技術(shù)管理和技術(shù)應(yīng)為目標(biāo)的專科和本科教育,系統(tǒng)的課程設(shè)置已經(jīng)考慮了化學(xué)對(duì)礦物加工工程的重要性,無機(jī)化學(xué)、有機(jī)化學(xué)、物理化學(xué)都是必修課程,學(xué)時(shí)數(shù)占到專業(yè)基礎(chǔ)課程學(xué)時(shí)數(shù)很大的比例,經(jīng)過系統(tǒng)的化學(xué)知識(shí)的學(xué)習(xí),學(xué)生在學(xué)習(xí)浮選專業(yè)課程時(shí),已經(jīng)能夠較深入理解礦物浮選中的化學(xué)問題,也能較好掌握浮選理論和浮選工藝專業(yè)知識(shí)。在生產(chǎn)技術(shù)管理和技術(shù)應(yīng)用過程中,也基本能根據(jù)礦石性質(zhì)的變化,應(yīng)用所學(xué)到的化學(xué)知識(shí)和浮選理論,分析解決生產(chǎn)過程中出現(xiàn)的一般性的技術(shù)問題。以科學(xué)研究為目標(biāo)的研究生教育,為了使學(xué)生能夠從生產(chǎn)中發(fā)現(xiàn)和解決生產(chǎn)技術(shù)問題,具備獨(dú)立從事礦物加工工程領(lǐng)域科學(xué)研究的能力,在大學(xué)期間學(xué)習(xí)無機(jī)化學(xué)、有機(jī)化學(xué)、物理化學(xué)的基礎(chǔ)上,還需要進(jìn)一步學(xué)習(xí)分析化學(xué)。通過分析化學(xué)的學(xué)習(xí),可以讓研究生掌握常規(guī)的分析檢測(cè)技術(shù),了解和掌握科學(xué)研究過程中所要使用的現(xiàn)代檢測(cè)手段,發(fā)現(xiàn)、分析和研究試驗(yàn)過程中獲得的數(shù)據(jù)、結(jié)果,從而解決科學(xué)技術(shù)問題。對(duì)于博士研究生,是要讓他們更深層次理解礦物浮選的機(jī)理,培養(yǎng)其創(chuàng)新精神和意識(shí),為此,從電子、原子、分子層面上理解礦物浮選理論是必要的,所以,在已經(jīng)較好掌握了無機(jī)化學(xué)、有機(jī)化學(xué)、物理化學(xué)、分析化學(xué)的基礎(chǔ)上,量子化學(xué)的學(xué)習(xí)和了解對(duì)于博士研究生來說是需要的。從以上的分析可知,浮選跟化學(xué)是不可分的,浮選實(shí)際上就是應(yīng)用化學(xué)的一部分。無論是技術(shù)操作工人,還是從而浮選理論研究的博士研究生,不同程度都必須將化學(xué)作為基礎(chǔ),沒有相應(yīng)的化學(xué)基礎(chǔ),從事浮選技術(shù)應(yīng)用、技術(shù)開發(fā)及浮選理論研究都是難以想象的。化學(xué)是浮選的基礎(chǔ),浮選是礦物加工工程最重要的方法,因而礦物加工工程學(xué)科的化學(xué)教育是極端重要的。

3重視礦物加工工程學(xué)科的化學(xué)教育

篇13

計(jì)算機(jī)輔助教學(xué)在化學(xué)教學(xué)中,尤其適用于理論性和抽象性較強(qiáng)的內(nèi)容,例如原子核的組成、電子云、核外電子的運(yùn)動(dòng)、分子的結(jié)構(gòu)、構(gòu)型和構(gòu)象、化學(xué)鍵的形成、離子反應(yīng)和離子方程式等,適用于模擬實(shí)驗(yàn)難以操作、危險(xiǎn)性大或反應(yīng)現(xiàn)象不明顯的內(nèi)容。

二、化學(xué)教學(xué)中常用的計(jì)算化學(xué)軟件

計(jì)算化學(xué)軟件作為化學(xué)化工領(lǐng)域中最常用的工具,無論在科研或者教學(xué)中都擔(dān)負(fù)著重要的作用。化學(xué)教學(xué)中通常應(yīng)用到下列軟件:

1.ChemDraw

ChemDraw軟件美國CambridgeSoft公司推出的一款優(yōu)秀的商業(yè)化化學(xué)軟件ChemOffice中的模塊之一。ChemDraw中存貯了大量的分子結(jié)構(gòu)圖形、原子軌道、分子軌道和電子云圖的圖形,在化學(xué)教學(xué)中主要用于繪制有機(jī)分子結(jié)構(gòu)式及反應(yīng)方程式等,ChemDraw中的實(shí)驗(yàn)裝置繪制模版則是繪制反應(yīng)流程及實(shí)驗(yàn)儀器裝置圖的重要工具。

2.Gaussian

Gaussian程序是目前國際上最為流行的量子化學(xué)計(jì)算軟件之一,GaussView是Gaussian的圖形用戶界面,其主要功能是可以很方便而精確地作出各種原子、分子及過渡態(tài)的空間結(jié)構(gòu)。和一般化學(xué)作圖軟件相比,它更加專業(yè)和精確,可以直接讓學(xué)生觀察了解各種物質(zhì)的鍵長、鍵角、電子云分布等微觀結(jié)構(gòu)以及分子內(nèi)部的各種振動(dòng)。

3.Materials Studio

Materials Studio軟件包是Accelrys公司開發(fā)的,是常用的分子設(shè)計(jì)和模擬軟件,可進(jìn)行量子力學(xué)、分子力學(xué)、分子動(dòng)力學(xué)計(jì)算。Materials Studio軟件包功能非常強(qiáng)大,主要由這樣幾個(gè)模塊組成:構(gòu)造分子;優(yōu)化分子結(jié)構(gòu);研究分子反應(yīng);觀察軌道和電子圖譜;研究分子動(dòng)力學(xué)。

Materials Studio可以快速準(zhǔn)確地獲得分子的構(gòu)型與結(jié)構(gòu)參數(shù),通過對(duì)分子的結(jié)構(gòu)進(jìn)行分析,運(yùn)用所得的結(jié)果來解釋或預(yù)測(cè)化學(xué)反應(yīng)的性質(zhì)。除此之外,也可以計(jì)算出分子的靜態(tài)性質(zhì),通過這些數(shù)據(jù)我們可以預(yù)測(cè)化學(xué)反應(yīng)的位置、說明化學(xué)反應(yīng)的途徑和機(jī)制、解釋分子的動(dòng)力學(xué)行為等,在教學(xué)中可以達(dá)到事半功倍的效果。

(1)Materials Studio在晶體結(jié)構(gòu)教學(xué)中的應(yīng)用

在化學(xué)中,晶體的結(jié)構(gòu)和對(duì)稱性是學(xué)生不易掌握的內(nèi)容,主要原因是該部分涉及三維空間變換,單純板書式教學(xué)對(duì)學(xué)生的理解作用不大。利用Materials Studio的建模功能,可以方便地建立各種晶體的三維模型,直觀化地展示其結(jié)構(gòu)和對(duì)稱性等特點(diǎn)。圖4是面心立方NaCl在不同視角下的晶體結(jié)構(gòu)圖,我們可以直接得到NaCl的晶體結(jié)構(gòu),同時(shí)可以看到NaCl是立方密排晶格(ABCABC)。

此外,點(diǎn)擊菜單build中的symmetry還可以得NaCl晶格的原胞。同時(shí),Materials Studio還允許自由的創(chuàng)建晶體結(jié)構(gòu),只要已知空間群類型、晶體結(jié)構(gòu)參數(shù)和元素類型,我們就可以任意的創(chuàng)建晶體。如果按下Find Symmetry選項(xiàng),便可看到已找到的NaCl晶體的對(duì)稱性為FM-3M,在教學(xué)中展示這種效果,能使學(xué)生容易理解晶體的對(duì)稱性的類型。

(2)Materials Studio在電荷密度教學(xué)中的應(yīng)用

在講授極性分子和非極性分子過程中,常常提到原子電荷分布情況及對(duì)物質(zhì)化學(xué)性質(zhì)的影響。Materials Studio中原子電荷顯示功能,使電荷分布一目了然。以Si來作為示范,在Volumetic Selection中,選擇顯示total electron density,會(huì)將場(chǎng)給顯現(xiàn)出來。這個(gè)場(chǎng)是電子在空間中的分布,Isosurface則是顯示出等位面。這里將電位以顏色來區(qū)其高低,在等電位密度中做出電位高低的圖,可以讓學(xué)生清楚地了解極性。

(3)原子軌道顯示在教學(xué)中的應(yīng)用

Materials Studio可以輕松地對(duì)各種原子軌道能量進(jìn)行計(jì)算并獲得其空間圖像。利用Element可以調(diào)出一個(gè)元素表,可以直接選擇元素,例如乙烷,在工具列中,選取CASTEP的計(jì)算套件計(jì)算原子軌道,在Task中選擇Energy,它在計(jì)算基態(tài)能量之后,就可以分析原子軌道了。

三、結(jié)束語

使用最新的化學(xué)計(jì)算軟件,采用新穎的教學(xué)形式和教學(xué)手段,直接在屏幕上顯示三維構(gòu)型,同時(shí)可以任意旋轉(zhuǎn)操作,使同學(xué)們的興趣大增,而且通過計(jì)算機(jī)輔助教學(xué)的動(dòng)畫模擬,使得微觀抽象的知識(shí)點(diǎn)更具體形象化,便于學(xué)生理解和掌握,收到很好的教學(xué)效果。

參考文獻(xiàn):

[1]王守緒.計(jì)算機(jī)技術(shù)在化學(xué)中的應(yīng)用研究進(jìn)展[J].化學(xué)研究與應(yīng)用,2000,12(4):119.

[2]任萃毅.介紹一個(gè)新型的化學(xué)軟件包-CS Chemoffice 2000[J].化學(xué)教學(xué),2001,(3):34.

主站蜘蛛池模板: 北海市| 宣城市| 驻马店市| 湄潭县| 德令哈市| 科技| 江西省| 黄大仙区| 明溪县| 库车县| 固镇县| 北碚区| 墨玉县| 友谊县| 罗源县| 绥中县| 织金县| 红桥区| 新野县| 同心县| 鹿邑县| 江川县| 克拉玛依市| 大余县| 彝良县| 诸城市| 长岛县| 山丹县| 山东省| 迁安市| 青阳县| 如东县| 水城县| 疏附县| 漠河县| 宣武区| 马关县| 公主岭市| 万安县| 久治县| 普宁市|