引論:我們為您整理了13篇化學成分分析論文范文,供您借鑒以豐富您的創作。它們是您寫作時的寶貴資源,期望它們能夠激發您的創作靈感,讓您的文章更具深度。
篇1
Keywords:LigusticumchuanxiongHort.;Chemicalconstituents;Structureidentification
川芎為《中國藥典》2005年版(Ⅰ部)收載品種,為傘形科植物川芎LigusticumchuanxiongHort.的干燥根莖,味辛、性溫,歸肝、膽、心包經,具有活血行氣、祛風止痛的功效,常用于月經不調,經閉痛經,癥瘕腹痛,胸脅刺痛,跌撲腫痛,頭痛,風濕痹痛[1]。川芎含有多種內酯類、生物堿類、酚類、以及揮發油類等多種化合物。
筆者對川芎進行了化學成分研究,從中分離得到了6個化合物,經鑒定為芥子酸(sinapicacid,Ⅰ)、β谷甾醇(βsistosterol,Ⅱ)、Z6,8’,7,3’二聚藁本內酯(Z6,8’,7,3’diligustilide,Ⅲ)、阿魏酸(ferulicacid,Ⅳ)、4-羥基3丁基苯酞(4hydroxy3butylphthalide,Ⅴ)、孕烯醇酮(pregnenolone,Ⅵ),其中化合物Ⅰ、Ⅵ為首次從該植物中分離得到。
1儀器與材料
X4熔點測定儀(溫度未校正);BrukerAvance600型核磁共振儀(TMS為內標),測定溶劑為CDCl3;BioTOFQ型質譜儀;柱層析硅膠(200~300目):青島海洋化工廠生產;川芎藥材購自成都市五塊石藥材市場,經成都中醫藥大學炮制制劑教研室胡昌江教授鑒定為川芎LigusticumChuanxiongHort.的干燥根莖。
2提取分離
川芎粗粉(10kg),經乙醇回流提取,乙醇提取液減壓濃縮至無醇味,氯仿萃取,回收氯仿,氯仿萃取物經硅膠(200~300目)柱層析,以石油醚醋酸乙酯混合溶劑進行梯度洗脫,TLC檢查合并相似流份,各組分進行反復硅膠柱層析分離,先后得到6個化合物。
3結構鑒定
化合物Ⅰ:無色針狀結晶,mp143~145℃,FeCl3反應呈陽性,顯示其具有酚羥基。溴甲酚綠反應呈陽性,表明其具有羧基。1HNMR(CDCl3)δ:3.93(6H,d,J=18.24,OCH3),6.28(1H,d,J=9.48,H7),6.85(2H,d,J=4.44,H2,H6),7.61(1H,d,J=9.48,H8),參照文獻[2],可確定該化合物Ⅰ為芥子酸(sinapicacid)。
化合物Ⅱ:無色針狀結晶,mp137~139℃,LibermannBerchard反應呈陽性,提示分子中具有甾體母核,10%硫酸乙醇溶液顯色為紫紅色。1HNMR(CDCl3)數據與文獻β谷甾醇標準圖譜[3]一致,且與對照品β-谷甾醇的薄層具有相同的Rf值,與β谷甾醇對照品混合測熔點不下降,故鑒定化合物Ⅱ為β谷甾醇(βsistosterol)。
化合物Ⅲ:無色片狀結晶,mp106~108℃,ESIMS給出分子量為380,結合元素分析確定分子式為C24H28O4,1H-NMR(CDCl3)δ:2.02(3H,m,H4),2.57(4H,m,H4),2.02(3H,m,H5),2.17(3H,m,H5),2.58(5H,m,H6),3.47(1H,d,J=7.24,H7),5.21(1H,t,J=7.8,H8),2.33(3H,m,H9),1.47(6H,m,H10),0.95(4H,t,J=7.6,H11),2.74(1H,m,H4’),2.45(1H,m,H5’),2.75(1H,m,H5’),5.93(1H,dt,J=9.6,4.1,H6’),6.17(1H,dt,J=9.6,1.8,H7’),2.94(1H,q,J=7.8,H8’),1.47(6H,m,H9’),1.14(3H,m,H10’),0.86(4H,t,J=7.6,H11’),ESIMS,1HNMR光譜數據與文獻報道Z6,8’,7,3’-二聚藁本內酯相符[4]。故鑒定化合物Ⅲ為Z6,8’,7,3’二聚藁本內酯(Z6,8’,7,3’diligustilide)。
化合物Ⅳ:淡黃色針狀結晶,mp174~176℃,溴甲酚綠反應呈陽性,表明其具有羧基。1HNMR(CDCL3)δ:3.94(3H,s,OCH3),6.30(1H,d,J=15.84,H3),6.93(1H,d,J=8.10,H8),7.11(1H,dd,J=8.22,1.8,H9),7.05(1H,d,J=1.92,H5),7.71(1H,d,J=15.84,H2),與阿魏酸光譜數據基本一致[4],且與對照品阿魏酸薄層具有相同的Rf值,故鑒定化合物Ⅳ為阿魏酸(ferulicacid)。
化合物Ⅴ:無色片狀結晶,mp188~190℃,1HNMR(CDCl3)δ:5.55(1H,dd,J=7.98,3.06,H3),7.36(1H,t,J=7.65,H6),7.47(1H,d,J=7.62,H5),7.01(1H,d,J=7.92,H7),2.31,1.77(各1H,m,H8),1.39(4H,m,H9,H10),0.90(3H,t,J=7.08,H11),5.72(1H,s,4OH)。13CNMR(CDCl3)δ:170.7(C1),80.7(C3),136.1(C3a),150.4(C4),120.0(C5),130.6(C6),117.8(C7),128.5(C7a),32.4(C8),26.8(C9),22.4(C10),13.9(C11)。以上物理常數及光譜數據與文獻報道4-羥基3丁基苯酞相符[4]。故鑒定化合物Ⅴ為4羥基3丁基苯酞(4hydroxy3butylphthalide)。
化合物Ⅵ:無色片狀結晶,mp191193℃,1HNMR(CDCl3),13CNMR(CDCl3),二維譜數據與文獻孕烯醇酮標準圖譜[5]一致,且與對照品孕烯醇酮的薄層具有相同的Rf值,與對照品孕烯醇酮混合測熔點不下降,故確定化合物Ⅵ為孕烯醇酮(pregnenolone)。
【參考文獻】
[1]國家藥典委員會.中國藥典,Ⅰ部[S].北京:化學工業出版社,2005:28.
[2]孫凱,李銑.南葶藶子的化學成分[J].沈陽藥科大學學報,2003,20(6):419.
篇2
2.1抗輻射作用螺旋藻中的螺旋藻多糖屬多價醇,能使低濃度的修復酶的空間構象保持穩定,從而保護酶的活性。藻藍蛋白具有顯著的抗輻射、抗突變的效應。螺旋藻的抗輻射作用還基于螺旋藻多糖存在一套較完整的DNA修復系統,能明顯提高機體核酸內切酶的活性和加強受損細胞的DNA修復作用,能保護骨髓細胞免受輻射損傷。
2.2抑制腫瘤細胞生長與復制螺旋藻中的螺旋藻多糖、藻藍蛋白及有機硒等,通過增強機體免疫和抗氧化能力,從而加強機體自身殺傷腫瘤細胞的能力。
2.3抗病毒作用螺旋藻多糖具有抗HIV-1(人體免疫缺陷病毒)、HSV-1(單純性皰疹病毒)作用。能抑制麻疹病毒、流行性腮腺炎病毒、流行性感冒病毒、HIV-1的復制。
2.4抗菌作用螺旋藻對革蘭氏陽性菌有抑菌作用,對革蘭氏陰性菌無抑制作用。
2.5對胃的保護作用螺旋藻因其堿性能提高胃內的PH值,使幽門螺旋桿菌喪失了生存環境,最終死亡。同時,其所含的豐富蛋白質、葉綠素、β-胡蘿卜素,對消化道上皮組織修復再生和發揮正常功能有良好的作用。
2.6幫助建造正常的乳酸桿菌群實驗證明,食用螺旋藻能使體內的乳酸桿菌增多,并使機體從飲食中吸收維生素B1和其他維生素的效率提高。
2.7對免疫系統的作用螺旋藻中所含的螺旋藻多糖、藻藍蛋白、β-胡蘿卜素、維生素E以及有機硒、超氧化歧化酶(SOD)等抗氧化微營養素具有全面調節機體免疫功能;可增強骨髓細胞的增殖活力,有利于巨噬細胞、T細胞和B細胞等免疫效應細胞的形成;明顯提高機體核酸內切酶的活性,加強機體DNA的修復合成作用,從而調節機體的非特異性免疫、體液免疫和細胞免疫功能。
2.8抗過敏研究表明,螺旋藻能降低過敏性休克大鼠的死亡率和顯著降低血中組胺水平,抑制抗DHPIgE引起的被動皮膚過敏反應和腹膜肥大細胞釋放組胺。
2.9對心腦血管的作用螺旋藻所含脂肪均為不飽和脂肪酸,不含膽固醇。同時富含葉綠素,以及絲氨酸、鉀鹽、維生素B6等,能幫助人體合成膽堿,降低血壓,防止和減輕動脈硬化,螺旋藻中的γ-亞麻酸是人體前列腺素即荷爾蒙的前輩,具有降低血脂,保持血管彈性,降低血液粘稠度,促進血液循環,達到防治心腦血管疾病、降低中風發病率的效果。
2.10提高鐵的生物有效性和調理貧血癥螺旋藻中含有較豐富的鐵質、維生素B12、葉綠素和維生素C。
2.11減輕汞及藥物對腎的毒性科學家研究證實:螺旋藻減輕了實驗室老鼠汞和藥物的腎中毒。科學家測定了兩個指標:腎的毒性血液尿氮(BUM)和血清肌酸。當老鼠飲食中添加30%的螺旋藻后,BUN和血清肌酸水平大幅下降。這一研究表明:螺旋藻對人類免受重金屬及藥物對腎臟的毒害有益處。
2.12抗氧化、抗衰老、抗疲勞有研究表明,螺旋藻多糖能降低心、肝、腦組織丙二醛(MDA)含量,增加全血、肝臟的谷胱甘肽過氧化物酶活性及還原型谷胱甘肽的含量,提高紅細胞和腦組織SOD(超氧化物歧化酶)的活性。螺旋藻還能增強血清乳酸脫氫酶的活性,降低運動后血乳酸值,延長負重游泳時間。
3毒性反應
螺旋藻營養膠囊灌胃給藥8g/kg×7d,未發現小鼠死亡,其呼吸均勻,大小便及分泌情況正常,此劑量為成人推薦劑量的333倍。大鼠在慢性毒性實驗期間其形態、體重、病理切片檢查均正常,生長發育良好。急性毒性實驗結果表明給小白鼠最大耐受量的藥液后未出現任何毒性反應。
4臨床應用
增強機體免疫力,具有防癌、抗癌、抗輻射作用;胃及十二指腸潰瘍;腸易激綜合征;便秘和痔瘡;風濕病;高血脂;高血壓;心臟病;糖尿病;貧血癥;肝病;腎臟病;白內障等。
5近況和未來
螺旋藻由于其高安全性、高營養性,被聯合國糧農組織(FAO)推薦為“21世紀最理想的食品”,早已在世界各地得到普遍應用。如今,螺旋藻除了營養保健功效外,其特殊的藥理作用正備受各國醫學界的關注,隨著研究的逐步展開,其潛在的醫用價值將被充分挖掘,也必將有其廣闊的前景。
【論文關鍵詞】螺旋藻;化學成分;藥理作用;毒性化學成分
篇3
1化學成分研究
1.1C21甾體苷類C21甾體苷類化合物是通光散中研究最多的成分,也是其主要的生理活性物質。從20世紀80年代開始,陸續從該植物的藤莖及種子中分離出50多種C21甾體苷類,含有多種β去氧糖。糖鏈主要連接在苷元的3位。主要有6種不同結構的苷元:Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ和Ⅵ。見表1。
1.2其它成分[9]從該植物中分離得到兩個環醇:牛奶菜醇和二氫牛奶菜醇[9]。三個萜類化合物13(31,32dimethyl30methylene21αδacetoxytetradecanyl)29methylperhydrophenanthr1,3diene[17]、齊墩果18烯3乙酯和a香樹脂醇乙酸酯。此外還有琥珀酸、硬脂酸、棕櫚酸、二糖cymaroside等[18]成分。
2藥理活性研究
2.1抗腫瘤活性現代藥理研究表明,通光散所含C21甾體苷類和多糖具有抗腫瘤活性,通光散提取物對多種惡性腫瘤細胞有明顯的抑制作用。
羅思齊等[3]測試了6種從通光散中分離得到的C21甾體苷元對KB,KB-VI,P338細胞株的毒性,只有化合物10,11和52對小鼠KB-VI細胞有弱的細胞毒活性,它們的ED50分別為4.1,2.5和3.4μg/ml。
應用MTT法觀察通光散70%乙醇提取物的正丁醇萃取部位上大孔樹脂后的95%乙醇洗脫部分和乙醚萃取部位對人骨肉瘤細胞Saos-2,人胃癌細胞SGC-7901,人肝癌細胞Bel-7404等的體外細胞毒作用,結果表明通光散對多種腫瘤細胞的生長抑制顯示不同的敏感性,并呈現一定的劑量依賴性,其中對人骨肉瘤細胞和人肝癌細胞的作用較強,而對人胃癌細胞作用相對較弱。
用通光散提取物制備的消癌平口服液以20,10,5g生藥/kg劑量對小鼠灌胃給藥,發現消癌平口服液對小鼠體內移植的S180、胃癌、P388有明顯抑制作用[19]。
李茂全等[20]研究了消癌平對SGC-7901胃癌細胞的作用及機制,體外抑制試驗結果顯示其對SGC-7901胃癌細胞有較好的抑制作用,藥物作用7d后的IC50為21mg/ml。采用不同濃度消癌平抑制用胃癌細胞株移植后的昆明種小鼠體內腫瘤,用流式細胞儀檢測,發現消癌平能抑制SGC-7901胃癌細胞株的生長,對G1期細胞有明顯的阻斷作用,使瘤體細胞主要停留在G1期。細胞形態學檢查的結果表明消癌平能誘導癌細胞向正常細胞轉換。
孫玨等[21]采用MTT比色法和放射免疫法觀察消癌平對體外培養的人肝癌Bet-7404細胞、HepG2細胞的作用,以及對人肝癌細胞甲胎蛋白(AFP)分泌的影響,結果顯示消癌平對上述肝癌細胞有顯著的抑制作用,能顯著降低AFP的分泌,提示消癌平在抑制肝癌細胞增殖的同時,能使AFP分泌量降低,可能使肝癌細胞向正常方向分化。
2.2平喘作用用組胺噴霧引喘法,豚鼠通光散苷100mg/kg腹腔注射,有一定的平喘作用。家兔靜脈注射60mg/kg,能對抗組胺引起的氣管痙攣松弛,還能減弱組胺引起的豚鼠離體腸管收縮。苦味甾體酯苷100~150mg/kg,腹腔注射能預防因組胺噴霧引起的支氣管痙攣,有一定的平喘作用;離體豚鼠支氣管灌注,對痙攣狀態的支氣管有解痙作用;對小鼠腹腔注射的LD50為274mg/kg。
2.3降壓作用苦味甾體酯苷對離體兔耳血管灌注有直接擴張血管作用。麻醉犬靜脈注射通光散苷有短暫、輕度的降壓作用,無快速耐受現象,其降壓似與中樞無關,離體兔耳血管灌流實驗表明,它能直接擴張血管
2.4其他作用本品能明顯提高機體的免疫能力,其抗癌作用的實現可能不是通過細胞毒,而是通過加強機體免疫力來達到抗癌效果。此外,尚有止痛、解毒、保肝利尿、恢復腫瘤患者放療、化療后白細胞下降作用。通光散總苷對肺炎雙球菌和流感桿菌有抑制作用。
表1通光散中的C21甾體苷類化合物(略)
3結語
通光散對胃癌、肝癌、肺癌臨床療效顯著,其化學成分和藥理作用研究也較多,但是化學成分和藥理作用的結合研究報道還比較少,其抗腫瘤的活性成分還沒有明確,應加強此方面的研究。
【參考文獻】
[1]楊仁洲,楊崇仁,周俊.通光藤苷元甲、乙和丙的結構[J].云南植物研究,1980,3(3):271.
[2]S.Miykawa,K.Yamaura,K.Hayashi,etal.FiveglycosidesfromtheChinesedrug"TONG-GUANG-SAN":thestemsofM.tenacissima[J].Phytochem,1986,25(12):2861.
[3]S.Q.Luo,L.Z.Lin,G.A.Cordell,etal.PolyoxypregnanesfromM.tenacissima[J].Phytochem,1993,34(6):1615.
[4]蔣毅,羅思齊.通光藤中新C21-甾體甙的化學結構研究[J].中國醫藥雜志,1996,27(9):391.
[5]陳紀軍,張壯鑫,周俊.通光藤甙F,G,H和I結構[J].云南植物研究,1999,21(3):369.
[6]J.Deng,Z.X.Liao,D.F.Chen.MarsdenosidesA-H,polyoxypregnaneglycosidesfromM.tenacissima[J].Phytochem,2005,66(9):1040.
[7]J.Deng,Z.X.Liao,D.F.Chen.ThreenewpolyoxypregnaneglycosidesfromM.tenacissima[J].HelveticaChemActa,2005,88(10):2675.
[8]S.X.Qiu,S.Q.Luo,L.Z.Lin,etal.FurtherPolyoxypregnanesfromM.tenacissima[J].Phytochem,1996,41(5):1385.
[9]邢旺興,陳斌,宓鶴鳴,等.通光藤的化學成分研究[J].中國中藥雜志,2004,29(12):1148.
[10]邢旺興,陳斌,宓鶴鳴,等.通光藤中兩個新C21甾體苷類成分[J].藥學學報,2004,39(4):272.
[11]羅思齊,徐光漪,易大年,等.通光藤中一個新C21甾族化合物的化學結構測定[J].化學學報,1982,40(4):321.
[12]周俊,楊崇仁,楊仁洲.通光藤苷元甲的化學結構[J].植物學報,1980,22(1):67.
[13]J.Deng,Z.X.Liao,D.F.Chen.TwonewC21steroidsfromM.tenacissima[J].ChinChemLett,2005,16(4):487.
[14]S.Singhal,M.P.Khare,A.Khare.Cissogenin,apregnanegeninfromM.tenacissima[J].Phytochem,1980,19(11):2427.
[15]S.Singhal,M.P.Khare,A.Khare.Tenasogenin,apregnaneesterfromM.tenacissima[J].Phytochem,1980,19(11):2431.
篇4
Abstract:ObjectiveToinvestigatetheconstituentsofPyrolaxinjiangensis..MethodsSeparationandpurificationwereperformedonsilicagelCCandsephadexLH-20.Theirstructureswereestablishedonthebasisofphysicochemicalandspectralanalysis.ResultsFivecompoundswereisolatedandidentifiedasPyrolin(Ⅰ),Isoquercitrin(Ⅱ),Pirolatin(Ⅲ),Monotropein(Ⅳ),renifolin(Ⅴ),respectively.ConclusionThesecompoundsareisolatedfromPyrolaxinjiangensisforthefirsttime.
Keywords:PyrolaxinjiangensisY.L.Chou;Chemicalconstituents
新疆鹿蹄草PyrolaxinjiangensisY.L.Chou為鹿蹄草科鹿蹄草屬植物,產于新疆維吾爾自治區境內的天山及阿爾泰山脈,是新疆民族藥常用藥材[1]。該屬植物共有三十余種,我國產27種3變種,較為集中的分布在我國的西南部和東北部[2]。《中國藥典》中收載的中藥鹿蹄草是鹿蹄草或普通鹿蹄草的干燥全草,其性溫,味甘、苦,具有祛風除濕、強壯筋骨、補虛益腎、收斂止血的功效,主治風濕痹痛,腎虛盜汗,筋骨酸軟,虛弱咳嗽,外傷出血。哈薩克民間用新疆鹿蹄草治療和預防心血管疾病,對冠心病、高血壓病以及由其引發的心痛、胸悶、心悸等有特效。體外抗血小板聚集活性測試表明新疆鹿蹄草的70%乙醇提取物對血小板聚集有顯著的抑制作用。本實驗對新疆鹿蹄草乙醇提取物的正丁醇萃取部分進行了化學成分分離,從中得到五個化合物,通過化學和光譜方法鑒定了它們的結構,分別為鹿蹄草素(Ⅰ),異槲皮苷(Ⅱ),鹿蹄草苷(Ⅲ),水晶蘭苷(Ⅳ),腎葉鹿蹄草苷(Ⅴ),所有化合物均為首次從新疆鹿蹄草中獲得。
1儀器與材料
Yanaco顯微熔點測定儀(溫度未校正),FTS165型紅外光譜儀(美國PerkinElmer公司生產),EI-MS和FABMS用ZABHS型質譜儀,Varianinova400型核磁共振儀(TMS作內標)。柱色譜硅膠(200300目)和薄層色譜硅膠GF254均為青島海洋化工廠產品,sephadexLH20為Pharmacia公司產品。化學試劑均為分析純。藥材購自新疆阿勒泰,由新疆生態與地理研究所沈觀冕研究員鑒定為新疆鹿蹄草PyrolaxinjiangensisY.L.Chou。
2方法與結果
2.1提取與分離
取新疆鹿蹄草干燥全草3.5kg粉碎,用70%乙醇回流提取3次,合并提取液,減壓濃縮,得浸膏848g。將浸膏分散于水中,依次用石油醚,氯仿,醋酸乙酯,正丁醇萃取。取正丁醇部位63g進行硅膠柱色譜分離,以氯仿-甲醇(100∶0~0∶100)梯度洗脫,每500ml為1個流份,合并成分相似流份,再經反復硅膠柱色譜和sephadexLH20分離純化,得到化合物Ⅰ(69mg),Ⅱ(120mg),Ⅲ(19mg),Ⅳ(45mg),Ⅴ(15mg)。
2.2結構鑒定
2.2.1化合物Ⅰ無色片狀結晶(氯仿),分子式:C7H8O2;mp126-127℃;三氯化鐵-鐵氰化鉀反應顯陽性;IRνKBrMaxcm-1:3320,1615,1600,1490,1380,1190;EI-MS(m/z):124[M]+,107,95,77,57,43;1H-NMR(DMSO-d6):8.61(1H,s,OH),8.53(1H,s,OH),6.57(1H,d,J=8.1Hz,H-6),6.50(1H,d,J=2.0Hz,H-3),6.41(1H,dd,J=1.8Hz,8.1Hz,H-5),2.05(3H,s,2-CH3);13C-NMR(DMSO-d6):149.52(C-1),147.73(C-4),124.41(C-2),117.20(C-3),115.12(C-6),112.63(C-5),16.13(2-CH3)。根據以上數據并參照文獻報道[3],鑒定為鹿蹄草素。
2.2.2化合物Ⅱ黃色粉末(甲醇),mp231~233℃;分子式:C21H20O12;鹽酸鎂粉反應顯紅色,molish反應顯陽性;IRνKBrMaxcm-1:3340(OH),1654(C=O),1602,1498(Ar);FAB-MS(m/z):487[M+Na+];1H-NMR(DMSO-d6):12.61(s,-OH),7.61(1H,dd,J=1.6Hz,8.4Hz,H-6'),7.48(1H,d,J=1.8Hz,H-2'),6.76(1H,d,J=8.4Hz,H-5'),6.34(1H,d,J=2.4Hz,H-8),6.15(1H,d,J=2.4Hz,H-6),5.31(1H,d,J=8.1Hz,H-1″).3.3~3.65(5H,m,H一2″~6″);13C-NMR(DMSO-d6):178.43(C-4),165.02(C-7),162.18(C-5),157.20(C-9),l57.15(C-2),149.53(C-4′),145.77(C-3′),134.30(C-3),123.07(C-6′),122.12(C-l′),116.94(C-5′),116.24(C-2′),104.83(C-l0),99.60(C-6),94.55(C-8),102.74(C-l″),72.30(C-2″),74.13(C-3″),68.95(C-4″),76.84(C-5″),61.01(C-6″),根據以上數據并參照文獻報道[4],鑒定為異槲皮苷。
2.2.3化合物Ⅲ白色針狀結晶(甲醇),mp165~167℃;分子式:C23H34O8;IRνKBrMaxcm-1:3340-3100,2916,1507,1205,1028;FAB-MS:461[M+Na]+;1H-NMR(CD3OD):6.95(1H,s,H-3),6.60(1H,s,H-6),5.37(1H,qt,J=6.7Hz,1.2Hz,H-2′),5.31(1H,t,J=7.2Hz,H-6'),4.80(1H,d,J=8.1Hz,H-1″),4.12(2H,s,2H-8′),3.3~3.75(7H,m,H-2″~6″,2H-1'),1.98~2.30(4H,m,2H-5',2H-4′),2.16(3H,s,5-CH3),1.76(3H,d,J=2.1Hz,7′-CH3),1.73(3H,s,3′-CH3);13C-NMR(CD3OD):151.45(C-4),149.64(C-1),136.22(C-3′),135.52(C-7′),130.92(C-2),128.41(C-2′),124.52(C-6′),123.37(C-5),120.08(C-6),116.39(C-3),61.34(C-8'),40.88(C-4'),28.57(C-1'),27.11(C-5'),21.31(7'-CH3),16.20(3'-CH3)),15.90(5-CH3),104.08(C-1″),75.05(C-2″),77.84(C-3″),71.51(C-4″),78.12(C-5″),62.70(C-6″)。根據以上數據并參照文獻報道[5],鑒定為鹿蹄草苷。
2.2.4化合物Ⅳ無色針狀結晶(甲醇),mp170-172℃;分子式:G6H22O11;IRνKBrMaxcm-1:3460-3000(OH),3000-2450(COOH),1702(C=O),1647(C=C);FAB-MS:413[M+Na]+;1H-NMR(DMSO-d6):7.32(1H,d,J=1.2Hz,H-3),6.11(1H,dd,J=2.5Hz,6.0Hz,H-6),5.53(1H,d,J=1.8Hz,H-1),5.48(H,dd,J=1.8Hz,6.0Hz,H-7),4.67(1H,d,J=7.5Hz,H-1'),3.3~3.70(8H,m,H-2'~6',5,10),2.59(1H,dd,J=2.0Hz,8.5Hz,H-9);13C-NMR(DMSO-d6):170.50(C-11),151.17(C-3),137.23(C-7),132.08(C-6),109.36(C-4),93.93(C-1),84.77(C-8),66.24(C-10),43.52(C-9),36.25(C-5),98.40(C-1'),73.13(C-2'),76.41(C-3'),70.26(C-4'),77.12(C-5'),61.24(C-6')。根據以上數據并參照文獻報道[6,7],鑒定為水晶蘭苷。
2.2.5化合物Ⅴ無色針狀結晶(甲醇),mp231~233℃;分子式:C18H24O7;RνKBrMaxcm-1:3350,1610,1513,1451,1205;FAB-MS:353[M+1]+;1H-NMR(CD3OD):6.61(1H,s,H-6),5.60(1H,m,H-3),4.78(1H,d,J=7.6Hz,H-1'),4.16(2H,s,2H-1),3.37~3.78(5H,m,H-2'~6'),3.28(2H,m,2H-4),2.30(3H,s,7-CH3),1.81(3H,s,2-CH3);13C-NMR(CD3OD):151.80(C-5),146.71(C-8),132.65(C-8a),130.87(C-2),130.07(C-7),120.70(C-4a),118.49(C-3),114.97(C-6),31.02(C-1),26.08(C-4),23.61(2-CH3),17.40(7-CH3),105.70(C-1'),75.61(C-2′),77.82(C-3′),71.45(C-4′),78.01(C-5′),62.79(C-6′)。
根據以上數據并參照文獻報道[8],鑒定為腎葉鹿蹄草苷。
3討論
文獻報道的對鹿蹄草屬植物的研究主要集中在鹿蹄草P.calliantha.H.Andres和普通鹿蹄草P.decorateH.Andre。從本次實驗結果可見,新疆鹿蹄草中含有的主要化學成分與以上兩種鹿蹄草屬植物相同,本研究對維吾爾醫中把新疆鹿蹄草作為常用藥材提供了理論依據。
【參考文獻】
[1]新疆植物志編輯委員會.新疆植物志,第4卷[M].烏魯木齊:新疆科技衛生出版社,2002.
[2]中國科學院中國植物志編輯委員會.中國植物志,第56卷[M].北京:科學出版社,1990.
[3]周玉波,李洪俠,王金輝,等.綠花鹿蹄草中的化學成分[J].中藥研究與信息,2005,7(6):11.
[4]易醒,石建功,周光雄,等.青錢柳化學成分研究[J].中國中藥雜志,2002,27(1):43.
[5]InouyeH,InoueK.Structureofrenifolinandreconfirmationofthestructureofpirolatin[J].Phytochemistry,1985,24(8):1857.
篇5
藥材于2003年采自江西省九江縣,經江西九江森林植物研究所譚策銘研究員鑒定為泥胡菜(HemisteptalyrataBunge)。FisherJohns型顯微熔點儀(溫度未校正),PerkinElmer241型旋光儀,AutospecUltimaETOF質譜儀,INOVA500核磁共振儀。柱色譜硅膠、薄層色譜硅膠板均為青島海洋化工廠產品,SephadexLH20為Pharmacia公司產品。
3結構鑒定
化合物1:白色粉末,mp195~197℃。FABMSm/z:395[M+Na]+;1HNMR(DMSOd6,500MHz)δ:6.72(2H,s,H3,5),6.45(1H,d,J=16.0Hz,H7),6.33(1H,dt,J=16.0、5.0Hz,H8),4.09(2H,t,J=5.0Hz,H9),3.76(6H,s,OCH3),4.90(1H,d,J=7.5Hz,H1′);13CNMR(DMSOd6,125MHz)δ:128.4(C1),152.7(C2,6),104.4(C3,5),132.6(C4),133.8(C7),130.1(C8),60.9(C9),56.3(OCH3),102.5(C1′),74.1(C2′),76.5(C3′),69.9(C4′),77.2(C5′),61.4(C6′)。根據以上數據及文獻[8],鑒定為紫丁香苷。
化合物2:無色針晶,mp190~192℃。FABMSm/z:309[M+Na]+;1HNMR(DMSOd6,500MHz)δ:7.35(1H,d,J=7.5Hz,H3),6.98(1H,t,J=7.5Hz,H4),7.18(1H,t,J=7.5Hz,H5),7.08(1H,d,J=7.5Hz,H6),3.28(2H,m,H7),4.75(1H,d,J=7.5Hz,H1′);13CNMR(DMSOd6,125MHz)δ:154.7(C1),131.6(C2),127.2(C3),121.7(C4),127.7(C5),114.8(C6),58.2(C7),101.4(C1′),73.4(C2′),76.5(C3′),69.8(C4′),77.1(C5′),60.8(C6′)。根據以上數據及文獻[9],鑒定為水楊苷。
化合物3:白色粉末,mp234~235℃。EIMSm/z:130(100,M+CO),115(80),87(75),70(43),60(35);1HNMR(DMSOd6,500MHz)δ:10.25(1H,brs,NH1),8.04(1H,s,NH3),5.24(1H,d,J=8.5Hz,H4),6.89(1H,d,J=8.5Hz,NH6),5.79(2H,s,NH28);13CNMR(DMSOd6,125MHz)δ:156.8(C2),62.5(C4),173.6(C5),157.4(C7)。根據以上數據及文獻[10],鑒定為尿囊素。
化合物4:白色粉末,mp205~206℃。FABMSm/z:377[M+Na]+;1HNMR(DMSOd6,500MHz)δ:1.76(2H,m,H2),5.06(1H,dt,J=8.5,4.0Hz,H3),3.55(1H,m,H4),3.92(1H,m,H5),1.97(2H,m,H6),7.02(1H,d,J=2.0Hz,H2′),6.75(1H,d,J=7.0Hz,H5′),6.96(1H,dd,J=7.0,2.0Hz,H6′),7.40(1H,d,J=16.5Hz,H7′),6.13(1H,d,J=16.5Hz,H8′);13CNMR(DMSOd6,125MHz)δ:73.4(C1),37.2(C2),70.8(C3),70.3(C4),68.0(C5),36.2(C6),174.9(C7),125.6(C1′),114.7(C2′),145.5(C3′),148.3(C4′),114.2(C5′),121.3(C6′),144.9(C7′),115.7(C8′),165.7(C9′)。根據以上數據及文獻[11],鑒定為綠原酸。
【摘要】目的研究泥胡菜的化學成分。方法對泥胡菜全草的95%(體積分數)乙醇提取物的正丁醇萃取部分進行色譜分離,根據光譜數據和理化性質確定各化合物的結構。結果分離并鑒定了4個化合物,分別為:紫丁香苷,水楊苷,尿囊素,綠原酸。結論4個化合物均為首次從本屬植物中分離得到。
【關鍵詞】泥胡菜;化學成分;紫丁香苷;水楊苷;尿囊素;綠原酸
Abstract:ObjectiveToinvestigatethechemicalconstituentsofHemisteptalyrata.MethodsTheentireplantswerefirstextractedby95%ofethanol,thenextractedbypetroleumether,chloroform,ethylacetateandnbutanol,respectively.TheresiduefromnbutanolextractionwaspurifiedonsilicagelcolumnchromatographandSephadexLH20column,respectively.StructuresofthepurifiedcompoundswereelucidatedbyMSandNMR.ResultsFourcompoundswereisolatedandidentifiedassyringin(1),salicin(2),allantoin(3)andchlorogenicacid(4).ConclusionCompounds1to4wereisolatedfromthisplantforthefirsttime.
Keywords:Hemisteptalyrata;chemicalconstituents;syringin;salicin;allantion;chlorogenicacid
泥胡菜(HemisteptalyrataBunge)為菊科泥胡菜屬植物,廣泛分布于我國各地,具有清熱解毒、消腫祛瘀的作用,臨床用于治療痔漏、癰腫、疔瘡、外傷出血和骨折等[1]。文獻[2-4]報道的從泥胡菜中分離得到的成分主要為黃酮、甾醇和木脂素等化合物。作者曾對其95%(體積分數)乙醇提取物的三氯甲烷和乙酸乙酯萃取部分進行了化學成分研究[5-7]。本研究報道從正丁醇萃取部分分離得到的4個化合物:紫丁香苷(1),水楊苷(2),尿囊素(3),綠原酸(4),4個化合物均為首次從本屬植物中分離得到。
【參考文獻】
[1]江蘇新醫學院.中藥大辭典[M].上海:上海科學技術出版社,1986:1458.
[2]黃本東,繆振春.泥胡菜化學成分的研究[J].華西藥學雜志,1991,6(1):1.
[3]任玉琳,楊峻山.中藥泥胡菜化學成分的研究[J].藥學學報,2001,36(10):746.
[4]任玉琳,楊峻山.中藥泥胡菜化學成分的研究(一)[J].中國中藥雜志,2001,26(6):405.
[5]鄒忠杰,楊峻山,鞠建華.泥胡菜化學成分研究[J].中國中藥雜志,2006,31(10):812.
[6]鄒忠杰,鞠建華,楊峻山.泥胡菜化學成分研究[J].中國藥學雜志,2006,41(2):102.
[7]鄒忠杰,楊峻山,鞠建華.泥胡菜化學成分研究[J].中草藥,2006,37(9):1303.
[8]ZHANGYY,GUOYZ,AGETAH,etal.StudiesontheconstituentsofaeriaIpartsofScutellariaplanipes[J].JChinPharmaSci,1998,7(2):100.
篇6
Keywords:Gynostemmapentaphyllu;Chemicalingredients;Saponin;Polysaccharide
絞股藍Gnostemmapentaphyllum(Thunb.)Makino又名七葉膽,為葫蘆科絞股藍屬植物。主要分布在東南亞及我國長江以南的廣大地區,資源豐富。絞股藍中含有皂苷、多糖、黃酮類化合物、有機酸和微量元素等多種化學成分。絞股藍能夠有效地保護心、腦、血管和肝臟,降低血脂、降膽固醇、降轉氨酶、調節免疫和抗誘變,而且在抗衰老、抗疲勞、抗輻射和消除自由基的同時,還能改善神經系統功能、抗潰瘍、抑制膽結石形成和調節內分泌活動[1~3]。因此,研究絞股藍中的化學成分,有利于進一步開發和利用絞股藍,明確絞股藍中的藥理活性成分。本文主要介紹了絞股藍皂苷和多糖等成分的研究進展,為絞股藍的開發提供參考。
1絞股藍皂苷成分的研究現狀
1976年日本人永井正博等在絞股藍中分離得到了人參二醇和2α-羥基人參二醇,首次揭示了絞股藍中含有達瑪烷(dammarane)型皂苷類成分。隨后,人們對絞股藍的化學成分進行了大量的研究,迄今發現的絞股藍皂苷(Gyp)總共達136種,其中有絞股藍皂苷(Gyp)Ⅲ、Ⅳ、Ⅷ、Ⅻ與人參皂苷(Gin)-Rb1,-Rb3,-Rd和-F2完全相同,此外還分離得到了人參皂苷Rd3,K,其余為人參皂苷的類似物。由于絞股藍的產地不同,其中的皂苷成分和含量也有很大的不同。覃章錚[4]等曾經對1990年以前發現的84種皂苷成分進行過綜述性報道,但由于絞股藍皂苷具有較好的藥理療效,因此,對絞股藍皂苷成分的研究一直是熱點。1990年后,又有52種絞股藍皂苷被相繼報道。根據苷元結構相近的程度,本文將這52種皂苷分為11類。
第1類絞股藍皂苷結構通式及特點:
序號分子式C-位3β201[5]C47H76O172-ara-glc-rha(S)2[5]C47H76O17
2-ara-glc-rha(R)3[6]C49H78O18MeCO
-glc-rha3|6|2xyl-H(S)4[6]C49H78O18MeCO
-glc-rha3|6|2xyl-H(R)5[6]C47H76O17-glc-rha3|2xyl-H
(S)6[6]C47H76O17-glc-rha3|2xyl-H(R)7[6]C48H78O18-glc-rha3|2glc-H(S)8[6]C51H80O19MeCO
-glc-rha6||43|2xylMeCO-H(R)
第2類絞股藍皂苷結構通式及特點:
序號分子式C-位2α3β20(S)9[7]C54H90O23-OH2-glc-glc6-glc-rha10[7]C53H88O23-OH2-glc-glc6-glc-xyl11[8]C54H90O20-Hrha
-glc-rha3|2|6rha-H
第3類絞股藍皂苷結構通式及特點:
序號分子式C-位3β1920(S)2112[7]C48H80O192-glc-glc-CH2OH-glc-H13[9]C55H92O22CH3CO-glc-rha|36|2xy1-CH3-H-O-glc14[9]C54H92O22-glc-rha3|2rha-CH3-H-O-glc15[9]C53H90O21-glc-rha3|2xyl-CH3-H-O-glc16[9]C52H88O21-ara-rha3|2xyl-CH2OH-H-O-glc17[9]C53H90O22-glc-rha3|2xyl-CH2OH-H-O-glc18[10]C54H92O222-glc-glc-CH2OH6-glc-rha-H19[10]C54H90O222-glc-glc-CHO6-glc-rha-H20[10]C47H78O172-ara-glc-CHO-glc-H
第4類絞股藍皂苷結構通式及特點:
序號分子式C-位3β232421[11]C41H70O132-xyl-glcH(S)22[11,12]C42H72O142-glc-glcH(S)23[11,12]C41H70O132-xyl-glcH(R)24[11,12]C41H70O142-xyl-glcOH(R)(S)25[13]C41H70O142-glc-xyl-OH(S)(S)
第5類絞股藍皂苷結構通式及特點:
序號分子式C-位3β23(S)26[9]C46H78O18-glc-xyl6|2xyl-OH27[9]C47H78O19-glc-glc6|2xyl-OH28[9]C41H70O142-xyl-glc-OH29[9]C41H70O142-glc-xyl-OH30[9]C42H70O142-xyl-xyl-OAc31[9]2-glc-xyl-OAc32[9]C48H80O19-glc-xyl6|2xyl-OAc
第6類絞股藍皂苷結構通式及特點:
序號分子式C-位3β1933[14]C49H82O18MeCO-glc-xyl2|6|3rha-CH334[14]C46H76O17-ara-xyl2|3rha-CHO
第7類絞股藍皂苷結構通式及特點:
序號分子式C-位3β192135[14]C46H74O17-ara-xyl2|3rha-CHO-OH36[14]C47H78O17-glc-xyl2|3rha-CH3-OH37[14]C49H80O18OAc-glc-xyl2|6|3rha-CH3-OH38[14]C48H78O17-ara-xyl2|3rha-CHO-OEt39[14]C49H82O17-glc-xyl2|3rha-CH3-OEt40[15]C47H78O16-lyx-glc3|2rha-CH3-OH
第8類絞股藍皂苷結構通式及特點:
序號分子式C-位3β121920(S)21252641[5]C53H90O222-ara-glc-H-CH3-rha-H-OH-glc42[9]C52H86O23-ara-xyl2|3rha-H-CHO-H-O-glc-OOH-H43[13]C46H76O18-ara-xyl2|3rha-H-CHO-H-OH-OOH-H44[9]C53H90O242-glc-glc-OH-CH3-xyl-glc-H-OOH-H45[13]C53H90O21-glc-xyl2|3rha-H-CH3-H-O-xyl-OCH3-H
第9類絞股藍皂苷結構通式及特點:
序號分子式C-位2α3β121920(S)212446[5]C52H88O22-H2-ara-glc-H-CH3-H-O-glc-rha47[9]C52H86O22-H-ara-xyl2|3rha-H-CHO-H-O-glc-H48[16]C36H62O10-OH-H-OH-CH3-glc-H-H
第10類絞股藍皂苷結構通式及特點:
序號分子式C-位3β1949[14]C49H80O18OAc-glc-xyl2|6|3rha-CH350[14]C46H74O17-ara-xyl2|3rha-CHO
第11類絞股藍皂苷結構通式及特點:
第12類絞股藍皂苷結構通式及特點:
glc=β-D-吡喃葡萄搪基,xyl=β-D-吡喃木糖基,rha=α-L-吡喃鼠李糖基,ara=α-L-吡喃阿拉伯糖基,lyx=β-D-來蘇糖基,Ac代表乙酰基,Me代表甲基,鍵上的數字代表鍵合的位置
隨著人們對絞股藍皂苷成分研究的不斷深入,新的絞股藍皂苷的不斷發現,且在結構上有很大的差別。第1類、第4類、第5類、第6類、第7類、第10類和第11類在二十位碳上成環,但是在其成環的類型上又存在著很大的差別。第11類所成的環為含氧的雙環。第1類、第4類、第6類、第7類和第10類所成的環為五元環,而其中的第1類、第4類和第7類為含氧的五元環,第6類和第10類為不含氧的五元環,而且即使在含氧的五元環中氧所在的位置也有所不同。第5類為含氧的六元環。此外,碳碳雙鍵的有無和位置也有很大的區別,第4類、第5類、第6類和第11類不含碳碳雙鍵,其他的幾類都含有碳碳雙鍵,第1類、第2類、第3類、第7類和第12類的碳碳雙鍵在24和25位碳上,第8類的碳碳雙鍵在23和24位碳上,第9類和第10類的碳碳雙鍵在25和26位碳上。
2絞股藍多糖的研究現狀
多糖也是絞股藍中含量比較多的化學成分,在研究皂苷的同時,對多糖的研究也逐漸地引起了人們的關注。王昭晶等[18]對堿提絞股藍水溶性多糖進行了研究,并得到一種粗多糖AGM。經葡聚糖凝膠(G-100)柱層析檢測其糖分布情況,表明AGM可能由兩種多糖組成,其中一種含有結合蛋白質。而且經高效液相色譜確定了AGM的單糖組成為:鼠李糖∶木糖/巖藻糖(其中至少含有木糖或者巖藻糖中的一種)∶阿拉伯糖∶葡萄糖∶半乳=2.43∶1.00∶3.02∶2.59∶3.46。宋淑亮(《絞股藍多糖的分離純化及其藥理活性研究》,2006山東中醫藥大學碩士論文)對絞股藍多糖進行了較為系統的研究,共分離出了3種絞股藍多糖GPS-2,GPS-3和GPS-4,并對其中的兩種GPS-2,GPS-3進行了深入的研究,確定了GPS-2的分子量為10700Dal,GPS-3的分子量為9100Dal。GPS-2成分中含有鼠李糖和木糖,GPS-3成分中含有鼠李糖、木糖、阿拉伯糖、半乳糖、果糖和葡萄糖。
3其它化學成分的研究現狀
絞股藍中除了含有皂苷和多糖外,還含有黃酮類化合物、萜類、有機酸、生物堿、多糖、蛋白質等以及鋅、銅、鐵、錳、硒等微量元素,但是,在最近幾年里對這幾方面的研究都比較少,對黃酮化合物的研究也只是對其含量的測定和精制上[19,20],目前,除了20世紀80年代報道過的商陸素、蘆丁、商陸苷及丙二酸等十多種黃酮類物質外,未見有新的化學成分的報道。
4結束語
研究絞股藍中的化學成分,將有利于進一步明確絞股藍的藥理活性。目前,國內外學者對絞股藍中的化學成分進行了大量的研究,且取得了一定的進展,特別是在絞股藍皂苷的成分研究中,發現了多種新絞股藍皂苷,這些發現將有助于進一步對絞股藍的開發和利用。此外,對絞股藍中多糖的研究也引起了國內一些學者重視,而且也取得了一定的進展,但是近幾年對絞股藍中黃酮化合物成分的研究未見報道。由此可見,對絞股藍多糖和黃酮類化合物成分的研究還有待進一步深入。
【參考文獻】
[1]張瑞哲,張常勝,于慧敏.絞股藍藥理及臨床作用研究進展[J].黑龍江醫藥,2000,13(5):295.
[2]任穎,王秋玉,吳澤民,等.絞股藍皂甙的藥理研究進展[J].中華實用中西醫雜志,2001,14(5):988.
[3]侯慧麗,傅童生.絞股藍的化學成分與藥理作用研究進展[J].動物醫學進展,2006,27(Z1):59.
[4]覃章錚,趙蕾,畢世榮,等.絞股藍的皂苷成分及資源[J].天然產物研究與開發,1992,4(1):83.
[5]SoniaP,CosimoP.Newdammarane-typeglycosidesfromgynostemmapentaphyllum[J].JournalofNaturalProducts,1995,58(4):512.
[6]YinF,HuLH.SixNewTriterpeneSaponinswitha21,23-LactoneSkeletonfromGynostemmapentaphyllum[J].HelveticaChimicaActa,2005,88(5):1126.
[7]HuLH,ChenZL,XieYY.Newtriterpenoidsaponinsfromgynostemmapentaphyllum[J].JournalofNaturalProducts,1996,59(12):1143.
[8]FangZP,ZengXY.StructureofgypentonosideafromgynostemmapentaphyllumMAKINO[J].ActaPharmaceuticaSinica,1996,31(9):680.
[9]YinF,HuLH,LouFC,etal.Dammarane-TypeGlycosidesfromgynostemmapentaphyllum[J].JournalofNaturalProducts,2004,67(6):942.
[10]HuLH,ChenZL,XieYY.Dammarane-TypeGlycosidesfromgynostemmapentaphyllum[J].Phytocheraistry,1997,44(4):667.
[11]LiuX,YeWC,MoZY,etal.FiveNewOcotillone-TypeSaponinsfromgynostemmapentaphyllum[J].JournalofNaturalProducts,2004,67(7):1147.
[12]LiuX,YURM,HsiaoWL,etal.ThreeNewDammaraneGlycosidesfromgynostemmapentaphyllum[J]ChineseChemicalLetters.2004,15(1):46.
[13]YinF,HuLH,PanRX.Noveldammarane-typeglycosidesfromgynostemmapentaphyllum[J].Chem.Pharm.Bull,2004,52(12):1440.
[14]YinF,ZhangYN,YangZY,etal.Ninenewdammaranesaponinsfromgynostemmapentaphyllum[J].Chemistry&Biodiversity.2006,3(7):771.
[15]AkeN,NguyenKH,EdvardsL,etal.ANovelinsulin-releasingsubstance,Phanoside,fromtheplantgynostemmapentaphyllum[J].TheJournalofBiologicalChemistry,2004,279(40):41361.
[16]TomH-WH,ValentinaR-N,NoerisKS,etal.AnovelLXR-aactivatoridentifiedfromthenaturalproductgynostemmapentaphyllum[J].BiochemicalPharmacology,2005,70(9):129.
[17]劉欣,葉文才,蕭文鸞,等.絞股藍的化學成分研究[J].中國藥科大學學報,2003,34(1):21.
篇7
Aratake等[2]從印度尼西亞海綿Haliclonasp.中分離得到一種多元不飽和溴代脂肪酸6-bromo-icosa-3Z,5E,8Z,13E,15E-pentaene-11,19-diynoicacid(1),并通過核磁數據確定了其結構。將分離得到的該化合物純化后進行細胞實驗,研究表明其對NBT-T2大鼠膀胱上皮細胞有細胞毒性,半數抑制濃度(IC50)值為36μg/mL。Watanabe等[3]從Strongylophora屬海綿中分離得到3個多烯炔類成分strongylodiolA、B、C,它們對Molt-4腫瘤細胞有非常顯著的細胞毒活性,IC50值分別為0.35、0.85、0.80μg/mL。
1.2過氧化物
Plakinidae類過氧化物在海綿中比較常見,該類成分在C-3、6位存在過氧橋,同時在C-3、4、6位有烷基鏈取代。Ernesto等[4]從中國南海簡易扁板海綿Plakortissimplex中分離得到plakortideH(2)、I、J,運用波譜學和化學的方法解析了其平面結構,并利用改良的Mosher法確定C-3、4、6手性位點的絕對構型。plakortideH、I、J對鼠纖維肉瘤細胞WEHI164顯示出較強的活性,其IC50值分別為7.1、9.5、8.2μg/mL。并闡述了該類化合物的構效關系,認為過氧環是其具有細胞毒活性的活性位點,若過氧環被破壞,其細胞毒活性則會消失。Dai等[5]通過活性篩選及分離手段從海綿Diacarnuslevii中分離得到4種結構新穎的norsesterterpene過氧化物diacarnoxidesA~D,其中diacarnoxideB(3)顯示出顯著的活性,可以抑制低氧狀態下腫瘤細胞的生長。海綿中分離得到的脂類化合物的結構見圖1。
2大環內酯類
來自海綿的大環內酯類化合物結構新穎、藥理活性多樣,其已經引起越來越多的海洋藥物研究人員的關注。Johnson等[6]從海綿Cacospongiamycofijiensis中分離得到大環內酯類聚酮化合物fijianolidesA(4)、B(5),及6種新型的fijianolidesD~I。fijianolidesA、B具有類似于紫杉醇的微管穩定作用,其中fijianolidesB的作用強于fijianolidesA,且在嚴重聯合免疫缺陷(SCID)小鼠腫瘤細胞體內評價中發現:fijianolidesB可持續阻斷HCT-116腫瘤細胞的生長長達28d。fijianolidesD~I在體外實驗中也顯示了一定的抗HCT-116和MDA-MB-435細胞系活性,其中fijianolidesE、H可以阻斷細胞的有絲分裂。Chevallier等[7]從巴布亞新及利亞海綿Irciniasp.中分離得到一種有強細胞毒性的大環內脂類化合物tedanolideC及其類似物。體外試驗表明該化合物對HCT-116細胞有強的細胞毒性,從細胞周期分析中發現其可使細胞分裂停留在S期。Singh等[8]從新西蘭海綿Mycalehentscheli中分離得到亞微克級的大環內酯類化合物pelorusideA、B。其中pelorusideB可以促進微管的聚合,同紫杉醇一樣可以阻斷細胞的有絲分裂在G2期。
3肽類
在近30年中,研究人員從海綿中發現了大量結構新穎且藥理活性強的肽類成分,部分化合物結構見圖3。海綿肽類化合物的研究能夠取得如此大的進展,主要有以下幾個原因:(1)制備型高效液相色譜等分離純化技術的快速發展與應用;(2)結構54132鑒定方面,波譜解析技術的進展,特別是2D-NMR和質譜等技術在海洋肽類結構測定方面的巨大推動作用。很多海綿環肽類成分由于N-端的封閉、β-或γ-氨基酸殘基以及D-型氨基酸等新氨基酸存在,已經不能通過Edman降解來獲取氨基酸序列的分析結果;(3)手性分離技術的發展,使研究人員能夠用極少量的樣品就可以確定某一氨基酸的絕對構型。Ebada等[9]從印度尼西亞的加里曼丹島海綿Jaspissplendens中分離得到化合物jaspamide(6)和其兩個衍生物jaspamideQ、R。通過1D和2DNMR核磁數據、質譜分析比較得到了jaspamide的準確結構。jaspamideQ、R可以抑制小鼠淋巴瘤L5178Y細胞的增殖,IC50值<0.1μg/mL。Plaza等[10]從帕勞群島深水水域海綿Theonellaswinhoei中分離得到3種新的類似于anabaenopeptin的多肽類化合物paltolidesA、B、C。paltolidesA、B、C在細胞實驗中并沒有顯示出抗HIV-1活性或細胞毒性,但在亞微摩爾級顯示出對羧肽酶的選擇性抑制。Plaza等[11]從海綿Siliquariaspongiamirabilis中分離得到6種新的環肽化合物,它們分屬于celebesidesA、B、C(7~9)和theopapuamidesB、C、D。celebesidesA在單輪傳染性實驗中抗HIV-1活性的IC50值為(1.9±0.4)μg/mL,而在非磷酸化的模擬實驗中,celebesidesA即使在50μg/mL這樣的高濃度下仍無活性。theopapuamidesA、B、C對人體結腸癌細胞HCT-116顯示出細胞毒性,IC50值為2.1~4.0μg/mL,并且有強的抗真菌活性。Ratnayake等[12]從巴布亞新幾內亞的海綿Theonellaswinhoei中分離得到一種結構新穎的環肽theopapuamide,該化合物對CEM-TART和HCT-116細胞系均具有強的細胞毒性,半最大效應濃度(EC50)值分別為0.5、0.9μmol/L。Robinson等[13]從兩種海綿Aulettasp.和Jaspissplendens中分離得到jasplakinolide和11個jasplakinolide類似物,其中有7個化合物為新化合物。jasplakinolideB顯示出非常強的細胞毒性,對人體直腸結腸惡性腺瘤細胞HCT-116的IC50值<1nmol/L,但是在細胞微絲試驗中,即使IC50值為80nmol/L時也沒有顯示出微絲破壞活性。
4生物堿類
生物堿類成分是海綿化學成分研究的一個非常重要的領域。該類成分結構獨特,其中許多化合物具有抗腫瘤、降壓、廣譜抗菌、抗病毒等生物活性。因此藥物開發人員對從中尋找治療人類重大疾病的特效藥物寄予了厚望。
4.1吲哚類生物堿Dai等[14]從海綿Smenospongiacerebriformis中分離得到2個新化合物dictazolineA(10)、B(11),以及2個已知化合物tubastrindoleA、B,活性篩選結果表明該類化合物既沒有顯示出明顯的細胞毒性,也沒有抗菌活性。
4.2β-咔啉類生物堿Inman等[15]從巴布亞新幾內亞海綿Hyrtiosreticulates中分離得到1個β-咔啉生物堿hyrtiocarboline(12),該化合物可選擇性抑制H522-T1肺非小細胞、MDA-MB-435黑素瘤細胞、U937淋巴癌細胞系的增殖。同時在該屬海綿中還分離得到dragmacidonamineA(13)、B。
4.3異喹啉類生物堿異喹啉類生物堿具有很好的抗微生物、抗腫瘤等藥理活性。ecteinascidin743(14)的開發成功使我們認識到了該類化合物具有廣闊的新藥開發前景[16]。Pettit等[17]從海綿Cribrochalinasp.中分離得到了3個異喹啉生物堿cribrostatin3(15)、4、5,并通過X單晶衍射確定了其立體構型。cribrostatin3、4、5顯示出很強的抑制卵巢癌細胞Ovcar-3增殖的活性,其IC50值分別為0.77、2.20、0.18μmol/L,對鼠白血病細胞P388也有很好的抑制增殖的活性,IC50值為2.49、24.6、0.045μg/mL。另外,這3個化合物還具有一定的抗微生物活性。
4.4溴代酪氨酸類生物堿溴代酪氨酸類生物堿是一類生物活性廣泛的成分。Carney等[18]從海綿Pasammaplysillapurpurea中分離得到bastadine(16),其對多種腫瘤細胞均表7R1=PO3H2R2=C2H58R1=PO3H2R2=C2H59R1=PO3H2R2=C2H56·1436·現出較弱的細胞毒性,在2μg/mL時,對結腸腺癌、人肺癌細胞A5499、鼠淋巴白血病細胞P388和人體腫瘤細胞HT-2有毒性;當濃度為2.5μg/mL時,其對無腫瘤CV-1猴腎細胞有一定的毒性。另外,bastadine對拓撲異構酶II(IC50值為2.0μg/mL)及脫氫葉酸鹽還原酶(IC50值為2.5μg/mL)有抑制作用。Galeano等[19]從加勒比海綿Verongularigida分離得到9種bromotyrosine衍生的化合物,其中purealidinB(17)、11-hydroxyaerothionin(18)在10、5μmol/L時對利什曼原蟲和瘧原蟲顯示出選擇性抗寄生蟲活性。
4.5吡咯類生物堿Mao等[20]從海綿Mycalesp.中分離得到18個結構新穎的脂溶性的2,5-二取代吡咯類成分(19)。這些化合物具有一定的阻斷缺氧誘導因子-1(HIF-1)活性的作用,IC50值<10μmol/L。作用機制研究表明,該類化合物在一定濃度下可通過阻斷NADH-泛醌氧化還原酶(復合物I)來抑制線粒體的呼吸作用,以此來阻斷HIF-1的活性。Liu等[21]通過活性追蹤及色譜方法從海綿Dendrillanigra中分離得到4個結構新穎的具有分子靶向抗腫瘤活性的片羅素類成分neolamellarinA、neolamellarinB、5-hydroxyneolamellarinB和7-hydroxyneolamellarinA(20)。7-hydroxyneolamellarinA可以阻斷低氧誘導下T47D細胞中的HIF-1活性,IC50值為1.9μmol/L,也可以抑制血管內皮生長因子(VEGF),使其停留在分泌蛋白水平。季紅等[22]從中國南海海綿Iotrochotasp.中分離得到purpurone(21),它是該屬海綿中的特征性成分和主要抗氧化活性成分,其清除DPPH自由基的IC50值為19μg/mL。
4.6其他Morgana等[23]從海綿Petrosaspongiamycofijiensis中分離得到mycothiazole及類似物8-O-acetylmycothiazole、4,19-dihydroxy-4,19-dihydromycothiazole;mycothiazole可以抑制低氧誘導下腫瘤細胞中HIF-1的生成,IC50值為1nmol/L,抑制體外低氧刺激下腫瘤血管的生成,并在體外實驗中還表現出一定的神經毒性。Coello等[24]從肯尼亞的拉姆島海綿Mycalesp.中分離得到一種環狀二胺1,5-diazacyclohenicosane(22),并運用HR-ESI-MS和1D、2D-NMR等波譜學方法確定了其結構。該化合物對A549、HT29和MDA-MB-231腫瘤細胞株顯示出中等強度的抑制增殖活性,IC50值分別為5.41、5.07、5.74μmol/L。Hermawan等[25]從海綿Leucettasp.中分離得到一種新型聚炔類生物堿2-(hexadec-13-ene-9,11-diynyl-methyl-amino)-ethanol(23),并通過核磁數據確定其結構。該生物堿對NBT-T2細胞具有較強的細胞毒性,IC50值為2.5μg/mL。張浩等[26]從中國南海海綿Axinellasp.中分離得到hymenialdisine(24)和debromohymenialdisine(25)。這兩種化合物為吡咯烷生物堿成分,都是MAPK途徑抑制劑,其中hymenialdisine可以有效抑制影響絲裂原激活的蛋白激酶1的活性,其IC50值為6nmol/L,對GSK-3激酶以及CDK家族也顯示出很強的抑制活性,其IC50值為10~700nmol/L。debromohymenialdisine能夠具有抑制G2期DNA損傷檢查點、檢查點激酶1(Chk1)和2(Chk2)的活性,IC50值分別為8、3、315μmol/L。海綿中分離得到的生物堿類成分的結構見圖4。
5甾醇
甾醇是一類分子中環戊烷駢多菲甾核的化學成分,是某些激素的前體,也是生物膜的重要組成部分。甾醇是存在于任何一種生物體內的化學成分。目前在海洋生物中發現了200多種單羥基甾醇,大部分在海綿中都可以找到。另外,從海綿中還分離得到了大量的多羥基甾醇類成分,這些成分大都具有顯著的生理活性。Whitson等[27]從菲律賓海綿Spheciospongiasp.中分離得到3種新的甾醇硫酸鹽spheciosterolsulfatesA(26)、B、C,通過1D、2D-NMR和HR-ESI-MS等波譜方法確定了它們的結構。這些化合物都可以阻斷蛋白激酶Cζ(PKCζ)的活性,IC50值分別為1.59、0.53、0.11μmol/L;在細胞實驗中顯示其也可以阻斷NF-κB的活性,EC50值為12~64μmol/L。黃孝春等[28]從我國南海的蓖麻海綿BiemnafortisTopsent中分離得到9個甾體。這些化合物均為首次從蓖麻海綿中分離得到,其中化合物cholest-4-ene-3,6-dione(27)在淋巴細胞轉移實驗中對T和B淋巴細胞的增殖顯示出顯著的抑制活性。另外,對蛋白質酪氨酸磷酸酯酶PTP1B也有顯著的抑制活性,其IC50值為1.6μmol/L。Morinaka等[29]從海綿Phorbasamaranthus中分離得到5種新的甾體咪唑類化合物amaranzoleB(28)~F和已知結構的amaranzoleA(29)。amaranzoleB~F屬于含有不同羥苯咪唑基側鏈的類似物。amaranzoleA、C、D中C24位的C-N被C-O鍵取代分別得到化合物amaranzoleB、E和F。這兩類咪唑類類似物很可能是因為烯丙基的重排,即C24-N和C24-O交換,同時伴隨CO2的脫去而形成的。人結腸癌細胞HTC-116細胞毒活性測試結果表明,amaranzoleA無顯著毒性(IC50>32μg/mL)。Whitson等[30]從菲律賓的科隆島海綿Lissodendoryx(Acanthodoryx)fibrosa樣品中分離得到3個新的硫酸取代的甾醇的二聚體化合物fibrosterolsulfatesA、B、C,其中化合物fibrosterolsulfatesA(30)、B(31)具有較強的蛋白激酶CPKCζ抑制活性,IC50值分別為16.4、5.6μmol/L。Fattorusso等[31]從Clionanigricans中分離得到兩個結構骨架異常奇特的甾體clionastatinsA(32)、B(33)。clionastatinsA、B為首次發現在自然界中存在的多鹵代androstane類甾體,它們對鼠纖維肉瘤細胞WEHI164、鼠巨噬細胞RAW264-7和人單核細胞THP-1顯示出中等強度的細胞毒活性,其IC50值為0.8~2.0μg/mL。Lu等[32]從昆士蘭北部海床收集得到的海綿Sollasellamoretonensis中分離得到兩種A環為芳香環的膽汁酸3-hydroxy-19-nor-1,3,5(10),22-cholatetraen-24-oicacid和3-hydroxy-19-nor-1,3,5(10)-cholatrien-24-oicacid。從海綿中分離得到的部分甾醇類成分的結構見圖5。
6萜類
萜類化合物是一類分子結構中具有(C5H8)n單元的不飽和烷烴及其衍生物。海綿中的萜類化合物結構類型多種多樣,并且具有強烈生理活性。
6.1倍半萜Xu等[33]從海綿Hyrtiossp.中分離得到一種新的倍半萜–二氫醌puupehanol(35)及已知的化合物puupehenone和chloropuupehenone。puupehenone顯示出強的抗新隱球菌和念珠菌活性,最低殺真菌濃度(MFC)值分別為1.25、2.50μg/mL。
6.2二倍半萜黃孝春等[34]從南海倔海綿屬海綿Dysideavillosa中分離得到5種scalarane型二倍半萜化合物。抗腫瘤活性篩選結果表明,scalaradial對HL-60、BEL-7402、MDA-MB-435等腫瘤細胞株具有顯著的抑制活性,IC50值分別為3.4、5.8、4.8μmol/L。邱彥等[35]從中國南海海綿Hyrtioserectus中分離得到8個二倍半萜類化學成分,通過采用多種色譜手段進行分離純化,應用多種波譜分析技術,并結合文獻對照,對所分離到的化合物進行了結構鑒定。其結構分別為furoscalarol、12-O-deacetyl-furoscalarol、16-deacetyl-12-epi-scalarafuranacetate、isoscalarafuran-A、scalarin(37)、12-O-deacetyl-19-deoxyscalarin、12-epi-deoxoscalarin、21-hydroxy-deoxoscalarin。印度尼西亞海綿Lendenfeldiasp.的脂類提取物可以抑制低氧誘導的T47D胸腺瘤細胞中hypoxiainduciblefactor-1的活性。Dai等[36]通過色譜分離技術分離得到結構已知的homoscalarane型二倍半萜16β,22-dihydroxy-24-methyl-24-oxoscalaran-25,12β-olactone(38)、24-methyl-12,24,25-trioxoscalar-16-en-22-oicacid、12,16-dihydroxy-24-methylscalaran-25,24-olide、PHC-4andscalarherbacinA。它們不僅能夠抑制低氧誘導的HIF-1的活性(IC50值為0.64~6.9μmol/L),還有抑制T47D和MDA-MDA-MB-231胸腺腫瘤細胞的增殖活性。
6.3三萜海綿中三萜的種類和數量都相對較少,主要可以分為異臭椿型、siphonella型和羊毛甾烷型3大類。Dai等[37]通過活性篩選及多種分離手段從南非海綿Axinellasp.中分離得到7個結構新穎的sodwanone三萜類化合物3-epi-sodwanoneK(39)、3-epi-sodwanoneK-3-acetate、10,11-dihydrosodwanoneB、sodwanonesT~W和結構新穎的yardenone三萜類化合物12R-hydroxyyardenone,以及結構已知的化合物sodwanoneA、sodwanoneB、yardenone。sodwanoneV可同時阻斷低氧誘導和鐵離子螯合劑(1,10-鄰二氮雜菲)誘導下T47D胸腺腫瘤細胞中HIF-1的活性(IC50值為15μmol/L)。化合物3-epi-sodwanoneK、sodwanonesT、10,11-dihydro-sodwanoneB和sodwanoneA可以抑制T47D細胞中HIF-1的活性。化合物3-epi-sodwanoneK-3-acetate對T47D細胞有一定的細胞毒性(IC50值為22μmol/L),化合物sodwanonesV對MDA-MB-231胸腺腫瘤細胞有一定的細胞毒性(IC50值為23μmol/L)。唐生安等[38]采用多種色譜手段對中國南海海綿Jaspissp.的化學成分進行了分離純化,應用波譜分析技術(包括IR、MS、2D-NMR等),并結合文獻對照,對所分離到的化合物進行了結構鑒定,分別為異臭椿類三萜化合物stellettinA(40)~D、H、I、rhabdastrellicacidA和geoditinB。該類化合物具有很強的抗腫瘤、抗病毒等生理活性,所以極具研究開發和應用價值。
篇8
1.2理論教學改革
在分析化學的理論教學中,既要講授分析化學的基本原理和方法,使學生嚴格樹立起“量”的概念,培養學生從事理論研究和實踐的嚴謹的科學作風和能力。又要將新發現的現代分析方法和技術巧妙的融合到經典分析化學中,如介紹分析化學在環境監測、環境毒理學、環境化學等課程方面的應用,特別是環境污染治理、生命科學在分析化學方向使學生認識到分析化學的重要性,充分調動學生的積極性,激發學生學習興趣,積極參與到教學活動中。教師教學不應重在講授,而應重在“授之予漁”,引導學生提出問題,指導學生解決問題。首先,教師提出能夠涵蓋課堂教學所有知識點的問題,讓學生課前帶著問題去預習,既培養獨立自主學習能力又可讓學生發現自己遇到的難點。然后,通過啟發引導,鼓勵學生提出問題,引導學生尋找解決問題的途徑和方法,并給出一定的時間讓學生去思考,去查閱相關的資料,培養學生獨立解決問題能力,同時讓學生自己挖掘每個問題所涵蓋的知識點,并引導其掌握問題在實際中的應用,以學生為主體通過問題的解決而掌握相關的知識點,不但幫助學生自主分析、解決問題,還提高了學生學習的興趣,使所學知識體系和創新能力不斷提高和發展。比如新課前先留下問題水中Cl-和CrO4-同時存在,緩慢加入濃的AgNO3哪種離子先沉淀呢?實驗現象又如何?學生帶著問題去預習,學習分步沉淀的原理,同時鼓勵學生小組設計實驗,理論課前可以先進行實驗,觀察現象,通過查找資料分析原因,課堂上教師根據學生解答問題情況講授新課,理論與實踐相結合,充分調動學生學習的積極性,培養了學生自主學習、團結協作分析解決問題的能力。課堂教學過程中注重靈活引導學生掌握學習方法,如對比方法,包括將有關同類滴定分析方法原理知識進行橫向或縱向的比較、幾種常規容量分析法的相似點不同點、化學鍵與分子間作用力的異同點、三種銀量法的異同點等,又如如何選擇最適的指示劑,重點講根據酸堿滴定曲線中滴定突躍選擇指示劑,而配位滴定和氧化還原滴定,就不再詳細講授,讓學生分組討論學習,而且滴定分析重在應用,加以案例分析教學,有助于提高學習興趣,讓學生學以致用,了解本方法的用途,進而開展實踐教學。
1.3創新實踐教學模式,多種實驗教學模式相結合
現階段分析化學實踐教學中,多數是老師為學生準備好試驗水樣、土樣、藥品試劑等,學生僅按照試驗步驟依次操作即完成實驗,這并不能滿足全面提升學生綜合實踐能力、創新能力的培養要求,針對上述問題,我對分析化學實踐教學做如下改革。以學生為主體、教師為引導,強調以工作任務為驅動組織實踐教學,開展實驗,同時提倡讓學生參與試驗的布點、采樣、試劑配制、試驗耗材準備等實驗整個過程的教學模式。即根據工作任務讓學生分小組完成任務分配表,包括試驗樣品的選取、實驗藥品用量的計算和配制方法、實驗原理、實驗注意事項等,在實踐教學方法上注重互動式、啟發式教學模式,鼓勵學生小組籌備實驗,實驗過程中出現問題,引導學生查找分析問題原因,注重培養學生能夠掌握基本的分析原理和方法基礎上,培養學生進行自主式探索研究,能夠自主提出問題、分析問題、并通過分工合作解決實際問題,真正實現教學相長。整個實驗過程,不僅提高了解決分析問題能力,也培養了學生團隊合作精神。實踐教學中工作任務的設置應注重基礎實驗和綜合設計實驗相結合,如基礎項目、驗證性項目、自主性項目、綜合性項目等多種層次的8個實驗項目來反復訓練學生。基礎項目的選取以學生基本操作規范、實驗常用儀器使用方法為主。如天平的使用、基本儀器操作規范及注意事項等。驗證性項目則在規范操作基礎上,與課程教學大綱相結合,學會如何著手解決工作任務,教師給出概要的指導性問題和解決問題可選擇的途徑,學生通過實驗過程記錄現象和課后查閱資料分析現象,形成總結報告,教師根據結果用部分課堂時間予以點評,如開設水中氯化物含量測定、硫代硫酸鈉的標定、EDTA的配制和標定等等。自主性項目則以小組為單位,進行自主式探索研究,分工合作,引導可以選擇食用米醋酸度的測定、食用鹽中碘含量的測定、自來水中總硬度的測定等。綜合性項目為設計研究跨課程的大型綜合項目,如草溪河水體富營養化評價等,根據所學的知識和操作技能和查閱相關資料,小組合作寫出設計方案,在教師論證其可行性后籌備實驗,完成實驗,寫出實驗小論文。
1.4改革考試方式,推行全面而科學的考核方法
改革以考核知識的積累、實踐能力為目標,考核采取全過程考核,考核方式有閉卷筆試、實驗操作、平時作業、實驗報告等多種形式,既注重結果又注重過程。理論部分占總成績的60%,實驗部分占總成績的30%,考勤占10%,共100分。考核內容以應用為主,主要考核學生掌握知識點和靈活運用能力,達到培養學生綜合應用能力的目標。
篇9
1.2課程內容單一
如今的高校有機化學教學課程較單一,幾乎所有學校的學生都學習相似的內容,同一高校的學生更是學習同樣的教學書籍內容。所以,有機化學這門課程缺乏創新,選擇性較差,綜合能力差,知識的相互關聯性有待加強,不能形成一個完善的有機化學課程群。因此,有些學生無法系統地掌握有機化學的理論知識,實踐能力較差,從而無法解決實驗過程中遇到的一些問題。
2.完善高校有有機分析化學教學的措施
2.1改善教學理念和方法
一方面,在高校有機化學教學中主要實施探究性的啟發式教學。即教學者在有機化學教學中對學生進行誘導式教育,充分調動學生主動學習的能力和積極性。教師不能對學生進行大量灌輸抽象的理論知識以及強迫學生背誦記憶,這會導致學生厭惡有機化學的學習,并且在實際操作中無法解決遇到的問題,不能正確、有效的學習這門課程。所以,這種探究性啟發式的教學模式不僅能夠開發學生主動學習有機化學的興趣,提高學生自主學習的能力,而且提高了學生的學習效率,培養學生的思考能力,為以后更深層的學習奠定了堅實的而基礎。另一方面,還應注重培養學生解決問題的能力。這就要求教學者要針對學生的具體實際情況,即學生掌握基本知識的水平、接受知識的能力、興趣愛好等,進行適當地專業知識傳授和實驗指點,不僅是單純領略到該專業知識,更重要的是提高學習的能力,走出誤區,突破盲點,不僅提高了學生主動學習的能力和興趣、加深對專業知識的理解能力和掌握能力,也提高了學生的獨立思考能力和學習能力。
2.2注重科學素養教育
首先,在高校有機化學教學體系中應重視對新知識的更新、補充。更新是高校當今進行教學改革中十分重要、緊迫的一項任務,更新教學內容,使教學知識現代化,不僅要求教育思想方面的更新、改革,還要求對專業技術方面問題的研究和解決。高校中有機化學教學模式中一些內容的理論性比較強或是知識比較陳舊,內容比較抽象,不好理解。所以,應適當將近年相關專業知識的一些成就、創新引入有機化學教育課堂上,不僅充實了學生的課堂學習和對有機化學更深刻、形象地理解,而且使學生了解該專業的發展現狀和具體應用,提高了學生對有機化學的理解深度,培養了學生的學習興趣。其次,教學者應結合實際生活中的案例進行課堂教學,豐富課堂活動。有機化學知識的呈現與人們的生產生活息息相關,人們的生活環境中處處體現有機化學,如各種食品健康問題,都是進行化學處理從而危害人們的健康。所以,任課教師應根據實際生活中的各種實例來闡述相應的原理知識,強調有機化學專業學科的重要性,開拓學生的視野。并且相應進行化學實驗,培養學生思考和解決問題的能力,進行實踐從而處理遇到的問題,進行科學探究和知識創新等。
2.3完善專業課程體系
篇10
Keywords:OryzaSativaL''''sroot;Columnchromatography;Aminoacids;Flavonoid;Sugarcompositions
糯稻根系禾木科植物糯稻OryzasativaL.的干燥根須。我國各地均有栽培。糯稻根具有養陰、止汗、健胃等功效[1]。常用于治療自汗、盜汗、肝炎、乳糜尿、去馬來絲蟲等癥[1]。湖北中醫院譚文界等[2]從糯稻桿中分離得到12種氨基酸。湖北新州縣人民醫院內科用糯稻桿治療急性黃膽肝炎有效率達86.2%。江蘇、廣東等許多地方亦用糯稻桿治療肝炎有效。復方氨基酸治療肝炎已經很普遍,而該植物含氨量可達1%~2%[2]。但糯稻根的化學成分及藥理研究,目前在國內外尚未見報道。我們從糯稻根須中分離得到16種氨基酸,兩種糖類及黃酮類成分。經理化、TLC色譜法、氨基酸分析儀測定及波譜分析,確定該植物中含門冬氨酸、蘇氨酸、絲氨酸、谷氨酸、脯氨酸、甘氨酸、丙氨酸、胱氨酸、纈氨酸、蛋氨酸、異亮氨酸、亮氨酸、酪氨酸、苯丙氨酸、賴氨酸、組氨酸、精氨酸、山柰素及果糖、葡萄糖。我們將分得的總氨基酸部分制成顆粒劑,經藥理實驗研究表明其有抗炎作用及明顯的滋陰作用。
1儀器和材料
糯稻根來自于桂林市郊。硅膠G(青海海洋化工廠生產),陽離子交換樹脂732#(上海樹脂廠生產)。紫外、紅外、核磁共振譜,氨基酸分析儀的實驗測定均為廣西分析測試中心和廣西師范大學代測。
2方法與結果
2.1提取與分離糯稻根3.0kg,用水煎煮3次,1h/次。合并濾液為A,藥渣為B,將A濃縮至3000ml,加無水乙醇至含醇量達70%,放置24h,過濾,濾液回收乙醇至無醇味,濾液上陽離子交換樹脂柱,用不同濃度的氨水洗脫,直到洗脫液無茚三酮反應為止。分別得到16種成分。B用80%乙醇回流提取3次,1h/次,合并濾液,回收乙醇得M,將M上聚酰胺柱,用H2O、不同濃度的乙醇洗脫,分別得到M1~M55個成分。
2.2TLC鑒定
2.2.1氨基酸TLC鑒定將樣品溶于蒸餾水中(1mg/ml),制成供試液。另將各種氨基酸標準品分別用蒸餾水溶解,制成對照品溶液(1mg/ml)。吸取供試液與對照液各5μl,分別點于同一硅膠G薄層板上(20cm×20cm),以正丁醇-甲醇-水(75∶15∶10)展開,展距19cm,0.2%茚三酮顯色,與對照品比較,供試品中的氨基酸與對照品的斑點一致。Rf值分別為:組氨酸Rf0.01,賴氨酸Rf0.02,絲氨酸Rf0.14,脯氨酸Rf0.15,蘇氨酸Rf0.17,谷氨酸Rf0.24,精氨酸Rf0.26,門冬氨酸Rf0.27,甘氨酸Rf0.29,酪氨酸Rf0.30,丙氨酸Rf0.34,纈氨酸Rf0.40,蛋氨酸Rf0.45,苯丙氨酸Rf0.49,異亮氨酸Rf0.50,亮氨酸Rf0.59。見圖1。
2.2.2糖的TLC鑒定將水提液與對照品葡萄糖、果糖,分別點于同一硅膠硼酸板上(5cm×20cm),以正丁醇-醋酸-水4∶1∶5(上層)展開,展距15cm,α-萘酚濃硫酸顯色,與對照品比較,供試品與對照品的斑點一致。
2.3黃酮類波譜學鑒定M5:黃色針晶,m.p274~276℃,HCl-鎂粉反應陽性,Molish反應陰性,UV[λ]MeoHmax:396、266,IRυKBrcm-1:3359(OH)、1659、1613(α、β-不飽和酮)、1600、1509(芳環)、1380、1175。1H-NMR(100MHz、CD3COCH3,TMS,δPP):8.14(2H,d,J=9Hz,2ˊ,6ˊ-H)、7.00(2H、d、J=9Hz、3ˊ,5ˊ-H)、6.49(1H、d、J=2.58Hz、8-H)、6.29(1H、d、J=2.6Hz、6-H)、3.11(4Hbr,OH加H2O消失)。綜上分析M5的結構為山萘酚。
2.4氨基酸分析儀鑒定結果見圖2。
3討論
糯稻根來源廣泛,全國各地均有栽培。經研究表明,根部含有各種氨基酸成分,作為氨基酸的天然資源是極為豐富的。
將糯稻根的有效成分研制為產品應用于臨床或者研制成食品保健品,將有較好的經濟效益和社會效益。
經藥理實驗表明,糯稻根的水煎液有明顯的滋陰、保肝作用。
M1,M2,M3,M4單體的結構鑒定待進一步研究。
致謝:氨基酸、黃酮單體成分測定分別由廣西分析測試中心和廣西師范大學協助測定,特此感謝!
【參考文獻】
篇11
Keywords:Sparganiumstenophyllum;GCMS;Volatileoil;Steamdistillation
中藥三棱是黑三棱科植物黑三棱SparganiumstoloniferumBuch.-Ham、小黑三棱Sparganiumsimplex、細葉黑三棱Sparganiumstenophyllum和莎草科的荊三棱Scirpusflariatilis的塊莖,其性味苦、平、入肝、脾經,具有破血行氣、消積止痛等功能,是活血化瘀的中藥[1]。三棱除含有黃酮類、皂苷類、苯丙素類外,揮發油也是其重要成分之一。三棱化學成分和藥理的研究已有報道[2,3],但揮發油的研究報道較少,而且多以常見的黑三棱為試驗材料,而細葉黑三棱揮發油成分至今尚無研究報道,因此本文報道了采用水蒸氣蒸餾法提取細葉黑三棱揮發油,用GCMS進行測定,質譜峰數據經Wiley138質譜數據庫檢索確定其化學成分,并用峰面積歸一化法確定各化學成分的相對百分含量的結果。旨在為細葉黑三棱的藥理作用研究和開發應用提供實驗依據。
1器材與方法
1.1材料
200607購于廣州市醫藥公司,產地為河北,經鑒定為黑三棱科植物細葉黑三棱Sparganiumstenophyllum的塊莖。
1.2儀器
設備電動粉碎機、揮發油測定儀、HP5890II/5972型GC-MS氣/質聯用儀(美國惠普公司)。
1.3揮發油的提取將細葉黑三棱粉碎,過30目篩。稱取100g參照《中國藥典》方法[4]提取揮發油,得揮發油0.7ml,收率為0.7%。
1.4揮發油成分分析
1.4.1分析方法
取適量細葉黑三棱揮發油,加醋酸乙酯稀釋成10μg/ml,用GC-MS分析,得到的質譜數據經wiley138質譜數據庫檢索,鑒定各組分峰。用面積歸一化法計算各組分的百分含量。
1.4.2GC-MS條件氣譜柱:BP-1(60m×0.22mm×0.25μm);非極性石英毛細管柱(美國SGE公司)。
柱溫80℃,保持15min后,以2℃/min速率一階升溫至140℃,保持20min,再以10℃/min二階升溫至220℃,保持10min。
進樣口溫度:220℃。載氣:He;載氣流量為1ml/min,進樣量為2μl。電離電壓1824mV,質譜溫度173℃,溶劑延遲8min,掃描范圍50~550m/z。
2結果
從細葉黑三棱揮發油中分離出11個質譜峰,見圖1。經質譜數據檢索分析,檢索出9種化合物,并用面積歸一化法確定了各成分的相對百分含量,見表1。表1細葉黑三棱揮發油化學成分和相對含量(略)
3討論
從細葉黑三棱揮發油中分離出11種成分,鑒定出其中的9種,檢出率為81.82%。已檢出的成分含量占揮發油總量的94.978%。從表1可知,細葉黑三棱揮發油的主要成分和含量分別為:十六烷酸(即棕櫚酸)(33.226%)、9,12-十八碳二烯酸(即亞油酸)(14.941%)、鄰苯二甲酸雙(2-甲氧基)乙酯(13.482%)、鄰苯二甲酸雙(2-甲基)丙酯(12.382%),占揮發油總量的74.031%。棕櫚酸含量最高,占揮發油總量的33.226%。細葉黑三棱揮發油中脂肪酸有2種,占揮發油的48.167%;烷烴有3種,占15.804%,酯有2種,占揮發油總量的25.864%;醇有1種,占2.712%,α-雪松醇為倍半萜醇;酮1種,占2.431%。細葉黑三棱揮發油中含量最高的是棕櫚酸和亞油酸,棕櫚酸常溫為常壓下為白色結晶蠟狀固體,熔點61.3℃,所以細葉黑三棱揮發油常溫為下呈現固態;亞油酸是人和動物的營養必需脂肪酸,亞油酸能降低血液膽固醇,預防動脈粥樣硬化[5]。研究發現,膽固醇必須與亞油酸結合,才能在體內正常的運轉和代謝。如果缺乏亞油酸,膽固醇就會和一些飽和脂肪酸結合,發生代謝紊亂,在血管壁上殘留下來,形成動脈粥樣硬化,引發心腦血管疾病[6]。細葉黑三棱揮發油中亞油酸含量較高,是其治療心腦血管疾病,具活血化瘀功效的基礎。
細葉黑三棱成分復雜,人們對其活性成分的藥理還知之甚少,要弄清楚細葉黑三棱藥理需要進一步深入的研究。本文對細葉黑三棱揮發油成分進行了分析和報道,目的是為細葉黑三棱的藥理作用研究和開發應用提供實驗依據。
【參考文獻】
[1]袁濤,華會明,裴月湖.三棱的化學成分研究[J].中草藥,2005,36(11):1607.
[2]董學,姚慶強.中藥三棱的化學成分及藥理研究進展[J].齊魯藥事,2005,24(10):612.
[3]黃新煒,段玉峰,韓果萍,等.中藥三棱的研究進展[J].中成藥,2003,25(7):576.
篇12
那么,怎樣強化“高考意識”、并使其貫穿于化學復習過程的始終呢?歸納起來,我們的做法是發揮了如下“五個作用”。
一、發揮“考綱”要求的主線作用
《考綱》是高考命題的依據,強化“高考意識”理所當然地應當使“考綱”成為教師組織學生復習的主線。由于“考試說明”僅是很簡要的目錄式提綱,為使學生對高考要求的領會明確具體,我們在開始系統復習之前,就把“考試說明”各個項目化解、組編成六個專題,每個專題又劃分成若干單元,形成了《中學化學復習知識體系表解》發給學生。這份“表解”實際上成了教師進行復習教學的提綱;復習進行到哪里,學生就閱讀到哪里,從中一目了然地明確哪些知識點是必考內容,哪些是考點,各考查點之間有何內在聯系,使學生在整個復習過程中,頭腦里有“考綱”這根“弦”,發揮了它在高考復習中的主線作用。
二、發揮歷屆高考題的示范作用
高考題是高考要求的具體體現,它既反映了高考的范圍、重點,又展示了題型、特點,成了復習教學的“無形指揮棒”。縱觀近年來全國的化學高考題一直保持了相當強的連續性,所以,讓學生以它們為范例,把握來年高考的尺度,這對于強化“高考意識”十分必要。如何發揮歷屆高考題的示范作用呢?我們從以下三方面布局:
首先,把近五年高考題收集起來,按中學化學知識的“六大塊”--基本概念、基本理論(又細分“物質結構與元素周期律”、“化學反應速度與化學平衡”、“電解質溶液”三部分)、元素的單質及其化合物、化學計算和化學實驗,組編成八組“高考題專題匯編”,印制出來,復習進行到哪個專題就將與之相關的“高考題匯編”同步發給學生,進行配套訓練。
篇13
對于探究地質礦物化學元素的分析工作而言,在選擇巖石層的具體類型上需要進行一定的界定。比如在不同密度的巖石礦物儲層的化學元素分析過程中,由于其在資源的儲存和分布上都較為豐富,但如果開發與后期評析環節操作不當,則會造成資源的大量流失與浪費。因此在選擇地質礦物化學分析技術的過程中需要按照以下原則。
首先,通過地質礦物化學分析技術來探究儲層中的非均質性效果與儲層涵蓋的化學性質,那么針對巖石結構應該具備良好的增產潛力,并能夠滿足地質礦物分析的可供開采量;其次,地質礦物化學分析工作自身要具備充足的能力積累與能量基礎,使用的化學元素分裂技術系數要滿足0.8MPa/100m以上標準的地質礦物儲層;最后,水驅單元內部的雙向或者多項流柱能夠準確對應,才能夠精準的滿足巖石體的非均質性、化學元素的測量要求。
1.2地質礦物化學分析應用的技術工藝
第一,壓裂設計模擬工藝。在地質礦物巖石層進行分段性化學分析與改造的過程中,針對地質礦物化學的分析工作,要以優化射孔原則為基準,精確排量與摩擦、阻力之間的遞進關系,以此來根據不同排量的標準選擇不同的孔眼保持穩定的摩阻性。從而分析巖石層中蘊含化學元素的總量與分量比。壓裂設計模擬工藝能夠起到支撐井口的作用,并保證了地質礦物化學元素的取量長度適中,從而有效測量出地質礦物化學元素中的化學含性量指標以及密度指標等。
第二,組合陶粒工藝。將直徑微小且適當的陶粒放置在地質礦物巖石層中的地層,以此來作為終端支撐載體,發揮良好的穩定性作用,同時也保證了之后的陶粒能夠有效進入。再將直徑中等且適當的礦物陶粒放置在地質礦物巖石層的中部,并與總體的巖石縫與化學元素定量位置保持水平平衡,該部位的陶粒起到重要的全體控制與支撐作用。利用這樣的陶粒組合作為壓裂井的有效支撐,起到壓裂縫穩定的作用,以此便能夠從更為精確的狀態下分析儲層的非均質性與化學元素量性分析之間的對應關系,即儲層非均質性的橫切變化值與豎切變化值對地質礦化學元素的影響都有所不同。
第三,高砂比壓裂工藝。從該工藝的內部結構來看比較簡單明了,通過利用井內的高砂密度比,來促使壓裂井內部空間密閉完好,并保持穩定的封閉狀態,以此為礦物巖石體的改造工作保持了良好的暢通性。同時使內部高砂密度保持大于10kg/m3的壓裂狀態,能夠使巖石層的總體開發節奏更加穩定,提高巖石礦物低滲透儲層的化學元素測量效果。
2地質礦物化學分析的基本流程分析
針對地質勘探工作來說,良好的技術與規范的流程是實地操作與探測活動的基本準則,不僅要以勘探工作不破壞生態環境為根本,同時更要保證實地活動的安全性。為了進一步剖析巖石層中地質礦物涵蓋的化學元素,下面站在地質礦物化學分析的角度,針對化學分析的具體操作流程進行展開討論。
2.1試樣的提取與初步加工
在選擇不同范圍、不同區域的巖石地質礦物層時,對試樣的提取環節要盡可能具備全面性與代表性。對每個含有典型特點的礦物層進行抽樣提取試樣,避免密度過大及過小的巖石區域范圍。同時,在對提取試樣進行初步加工時,采用符合等級標準的礦芯與巖芯,減少對試樣的磨損與外界影響。
2.2開展定性與半定量分析
為了更好的研究巖石層中的地質礦物化學元素,利用定性半定量結合的方式對其進行含量的綜合化驗與分析。由于定性分析具備良好的速度性,而半定量分析方法又能保障分析結果的穩定性,從而采取二者融合的方式進行試樣的分析,使化學分析的結果更為準確、科學。
2.3測定方法的選擇
在地質礦物化學分析的測定方法選擇中,需要建立在定性與半定量分析結果的基礎上,對各項化學元素指標的高低進行綜合測評,來保證化學共存元素的全面分析。那么在針對巖石層中化學含量較高的待測元素類型來說,容量法與重量法會更加適合,由于容量法與重量法能夠從化學元素自身的根本性質出發,從巖石層總體與化學元素個體的角度進行具體性測定,有利于保證高含量化學元素含量的基本值與測后值之間差異性的最小化。那么針對巖石地質礦物層中含量較低的化學元素而言,可以通過采取比色法來進行測定,能夠更加精準確定化學元素的性質與細微含量,同時也保持共存元素之間的形態不被破壞和改變。
2.4擬定分析方案
在擬定分析方案的環節中,是根據不同分析結果與測定結果進行集中性評估,從而模擬具備完整性與科學性的具體方案。在擬定方案的環節中,不僅需要相關工作人員具備良好的專業素質,同時更要對各個化學元素的基本特性都要清晰地掌握,站在精準度第一要把握的原則上進行方案的設計,一旦發現不合理現象時要及時排除,從而保障方案擬定結果的準確性。
2.5分析結果審查