統計學習是計算機及其應用領域的一門重要的學科。本書系統地介紹了統計學習的主要方法,特別是監督學習方法,包括感知機、k近鄰法、樸素貝葉斯法、決策樹、邏輯斯諦回歸與大程度熵模型、支持向量機、提升方法、em算法、隱馬爾可夫模型和條件場等。除章概論和后一章總結外,每章介紹一種方法。敘述從具體問題或實例入手,由淺入深,闡明思路,給出必要的數學推導,便于讀者掌握統計學習方法的實質,學會運用。為滿足讀者進一步學習的需要,書中還介紹了一些相關研究,給出了少量習題,列出了主要參考文獻。
統計學習方法》是統計學習及相關課程的教學參考書,適用于高等院校文本數據挖掘、信息檢索及自然語言處理等專業的大學生、研究生,也可供從事計算機應用相關專業的研發人員參考
李航 日本京都大學電氣工程系畢業,日本東京大學計算機科學博士。曾任職于日本NEC公司中央研究所,現任微軟亞洲研究院高級研究員及主任研究員。北京大學、南開大學、西安交通大學客座教授。研究方向包括信息檢索、自然語言處理、統計機器學習及數據挖掘。
第1章 統計學習方法概論
1.1 統計學習
1.2 監督學習
1.3 統計學習三要素
1.4 模型評估與模型選擇
1.5 i~則化與交叉驗證
1.6 泛化能力
1.7 生成模型與判別模型
1.8 分類問題
1.9 標注問題
1.10 回歸問題
本章概要
繼續閱讀
習題
參考文獻
第2章 感知機
2.1 感知機模型
2.2 感知機學習策略
2.3 感知機學習算法
本章概要
繼續閱讀
習題
參考文獻
第3章眾近鄰法
3.1 k近鄰算法
3.2 k近鄰模型
3.3 k近鄰法的實現:kd樹
本章概要
繼續閱讀
習題
參考文獻
第4章 樸素貝葉斯法
4.1 樸素貝葉斯法的學習與分類
4.2 樸素貝葉斯法的參數估計
本章概要
繼續閱讀
習題
參考文獻
第5章 決策樹
第6章 邏輯斯諦回歸與較大熵模型
第7章 支持向量機
第8章 提升方法
第9章 em算法及其推廣
第10章 隱馬爾可夫模型
第11章 條件隨機場
第12章 統計學習方法總結
附錄a 梯度下降法
附錄b 牛頓法和擬牛頓法
附錄c 拉格朗日對偶性
索引
質量好,快遞小哥也不錯。
好評
挺好的。